Uber开源深度概率编程语言Pyro,AI实验室蛰伏一年首现身

2017 年 11 月 4 日 量子位 专注报道AI
安妮 编译整理
量子位 出品 | 公众号 QbitAI

昨天,Uber AI实验室与斯坦福研究团队共同开源了概率编程语言Pyro。Pyro是一个深度概率建模工具,它基于Python和PyTorch库,帮助开发人员为AI研究创建概率模型。

据公司代表透露,Pyro也是Uber AI实验室发布的首个公开项目。

诶等等,Uber还有AI实验室?这还得从一年前的神秘收购说起。

蛰居一年的AI实验室

Uber是有自己的神秘AI实验室,而且已经快满岁了。

去年年底,Uber收购了Geometric Intelligence,这是一家号称要超越谷歌、Facebook等巨头的AI初创公司。创始人是纽约大学心理学家Gary Marcus和剑桥大学信息工程教授Zoubin Ghahramani,团队总共15人。

被收购后,14名成员前往旧金山Uber总部,成立了Uber AI实验室,负责AI基础研究和自动驾驶相关研究。

有意思的是,自被收购后,除了今年3月创始人之一Marcus离职的消息,Uber AI实验室没有任何研究进展新闻,逐渐淡出公众视野。

直到——昨天,当Uber在官方博客宣布,Uber实验室发布开源的Pyro概率编程语言。

设计原则

Pyro满足了四个设计原则,分别是:

通用性:Pyro是个通用的PPL,可以表示任何可计算的概率分布。它通过通用性语言(任意Python代码)开始迭代和递归,之后可以添加随机抽样、观察和推理。

可扩展性:只需在原代码上添加一些手写代码,Pyro就能扩展到大型数据集。这是怎样实现的呢?Pyro通过建立现代黑箱优化技术,使用小批量数据,来做近似推理。

最小性:Pyro灵活可维护。因为它由一个强大可组合的抽象小核心实现的。在可能的情况下,繁重的任务会分分配给PyTorch和其他库完成。

灵活性:Pyro想在用户需要的时候实现自动化操作。这不是无稽之谈,Pyro用高级抽象概念表达生成和推理模型,同时支持专家轻松自定义推理。

下一步

未来几个月里,Pyro将会持续更新迭代。研究人员表示,扩展和改进Pyro有多种方向,其中最重要的技术方向包括:

  • 优化抽象概念进行快速建模(如提供自动默认引导)和高级用法(如改进Poutine对象的组合契约)。

  • 添加额外目标(如alpha散度、infoVAE和基于GAN的损失等),并且额外添加估计梯度的期望值。

  • 添加马尔可夫链蒙特卡洛(MCMC)和序列蒙特卡洛(SMC)推理,特别是哈密顿蒙特卡洛(HMC),并将它们应用于变分推断目标。

  • 探索高斯过程的模式和应用,如贝叶斯优化等。

从长远来看,研究人员希望Pyro发展的主要方向将由应用程序和新型的Pyro社区来驱动。

相关资料

Pyro官方介绍地址:

https://eng.uber.com/pyro/

Uber AI实验室地址:

http://uber.ai/

Pyro项目地址:

http://pyro.ai/

Pyro代码地址:

https://github.com/uber/pyro

祝你玩得愉快~

加入社群

量子位AI社群11群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot4入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot4,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI

վ'ᴗ' ի 追踪AI技术和产品新动态


登录查看更多
2

相关内容

华为发布《自动驾驶网络解决方案白皮书》
专知会员服务
125+阅读 · 2020年5月22日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
MIT公开课-Vivienne Sze教授《深度学习硬件加速器》,86页ppt
Julia 对决Python:谁能在2019年称霸机器学习编程?
七月在线实验室
3+阅读 · 2019年1月13日
快讯 | Facebook将推出PyTorch 1.0,整合Caffe2 + PyTorch
大数据文摘
3+阅读 · 2018年5月3日
2017年四巨头的深度学习框架之战,你支持谁?
全球人工智能
6+阅读 · 2017年12月29日
Arxiv
20+阅读 · 2020年6月8日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关论文
Arxiv
20+阅读 · 2020年6月8日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员