Redis存储总用String?你大概错过了更优的使用方法

2018 年 12 月 23 日 DBAplus社群


Redis为我们提供了5种数据类型,基本上我们使用频率最高的就是String,而对其他四种数据类型使用的频次稍弱于String。原因在于:


  • String使用起来比较简单,可以方便存储复杂的对象,使用场景比较多;

  • 由于Redis expire time只能设置在key上,像List、Hash、Set、Zset属于集合类型,会管理一组item,我们无法在这些集合的item上设置过期时间,所以使用expiretime来处理集合的cache失效会变得稍微复杂些。但是String使用expire time来管理过期策略会比较简单,因为它包含的项少。这里说的集合是宽泛的类似集合。

  • 从更深层次来看,我们对另外四种数据类型的使用和原理并不是太了解。所以这个时候往往会忽视在特定场景下使用某种数据类型会比String性能高出很多的可能性,比如使用Hash结构来提高某实体某个项的修改等。


这里我们不打算罗列这5种数据类型的使用方法,因为这些资料网上有很多。我们主要讨论这5种数据类型的功能特点,弄清楚它们分别适合用于处理哪些现实的业务场景,我们又该如何组合性使用这5种数据类型,找到解决复杂cache问题的最优方案。


一、Redis的数据类型及特点

我们来简要了解一下String、List、Hash、Set及Zset:


1)String


String是Redis提供的字符串类型。可以针对String类型独立设置expire time,通常用来存储长字符串数据,比如某个对象的json字符串。


在使用上,String类型最巧妙的是可以动态拼接key。通常我们可以将一组id放在Set里,然后动态查找String还是否存在,如果不存在说明已经过期或者由于数据修改主动delete了,需要再做一次cache数据load。


虽然Set无法设置item的过期时间,但是我们可以将Set Item与String Key关联来达到相同的效果。


下图中的左边是一个key为Set:order:ids的Set集合,它可能是一个全量集合,也可能是某个查询条件获取出来的一个集合:



有时候复杂点的场景需要多个Set集合来支撑计算,在Redis服务器里可能会有很多类似这样的集合。这些集合我们可以称为功能数据,这些数据是用来辅助cache计算的,当进行各种集合运算之后会得出当前查询需要返回的子集,最后我们才会去获取某个订单真正的数据。


这些String:order:{orderId}字符串key并不一定是为了服务一种场景,而是整个系统最底层的数据,各种场景最后都需要获取这些数据。那些Set集合可以认为是查询条件数据,用来辅助查询条件的计算。


Redis为我们提供了TYPE命令来查看某个key的数据类型,如String类型:


SET string:order:100 order-100

TYPE string:order:100

string


2)List


List在提高throughput的场景中非常适用,因为它特有的LPUSH、RPUSH、LPOP、RPOP功能可以无缝的支持生产者、消费者架构模式。


这非常适合实现类似Java Concurrency Fork/Join框架中的work-stealing算法(工作窃取)。

注:Java Fork/Join框架使用并行来提高性能,但是会带来由于并发take task带来的race condition(竞态条件)问题,所以采用work-stealing算法来解决由于竞争问题带来的性能损耗。


下图中模拟了一个典型的支付callback峰值场景:



在峰值出现的地方一般我们都会使用加buffer的方式来加快请求处理速度,这样才能提高并发处理能力,提高through put。


支付gateway收到callback之后不做任何处理直接交给分发器。


分发器是一个无状态的cluster,每个node通过向注册中心pull handler queue list,也就是获取下游处理器注册到注册中心里的消息通道。每一个分发器node会维护一个本地queue list,然后顺序推送消息到这些queue list即可。


这里会有点小问题,就是支付gateway调用分发器的时候,是如何做load balance?如果不是平均负载可能会有某个queue list高出其他queue list。


而分发器不需要做soft load balance,因为哪怕某个queue list比其他queue list多也无所谓,因为下游message handler会根据work-stealing算法来窃取其他消费慢的queue list。


Redis List的LPUSH、RPUSH、LPOP、RPOP特性确实可以在很多场景下提高这种横向扩展计算能力。


3)Hash


Hash数据类型很明显是基于Hash算法的,对于项的查找时间复杂度是O(1)的,在极端情况下可能出现项Hash冲突问题,Redis内部是使用链表加key判断来解决的。具体Redis内部的数据结构我们在后面有介绍,这里就不展开了。


Hash数据类型的特点通常可以用来解决带有映射关系,同时又需要对某些项进行更新或者删除等操作。如果不是某个项需要维护,那么一般可以通过使用String来解决。


如果有需要对某个字段进行修改,使用String很明显会多出很多开销,需要读取出来反序列化成对象然后操作,然后再序列化写回Redis,这中间可能还有并发问题。


那我们可以使用Redis Hash提供的实体属性Hash存储特性,我们可以认为Hash Value是一个Hash Table,实体的每一个属性都是通过Hash得到属性的最终数据索引。


下图使用Hash数据类型来记录页面的a/bmetrics:



左边的是首页index的各个区域的统计,右边是营销marketing的各个区域统计。


在程序里我们可以很方便的使用Redis的atomic特性对Hash某个项进行累加操作。


HMSET hash:mall:page:ab:metrics:index topbanner 10 leftbanner 5 rightbanner 8 bottombanner 20 productmore 10 topshopping 8

OK


HGETALL hash:mall:page:ab:metrics:index

 1) "topbanner"

 2) "10"

 3) "leftbanner"

 4) "5"

 5) "rightbanner"

 6) "8"

 7) "bottombanner"

 8) "20"

 9) "productmore"

10) "10"

11) "topshopping"

12) "8"


HINCRBY hash:mall:page:ab:metrics:index topbanner 1

(integer) 11


使用Redis Hash Increment进行原子增加操作。HINCRBY命令可以原子增加任何给定的整数,也可以通过HINCRBYFLOAT来原子增加浮点类型数据。


4)Set


Set集合数据类型可以支持集合运算,不能存储重复数据。


Set最大的特点就是集合的计算能力,inter交集、union并集、diff差集,这些特点可以用来做高性能的交叉计算或者剔除数据。


Set集合在使用场景上还是比较多和自由的。举个简单的例子,在应用系统中比较常见的就是商品、活动类场景。用一个Set缓存有效商品集合,再用一个Set缓存活动商品集合。如果商品出现上下架操作只需要维护有效商品Set,每次获取活动商品的时候需要过滤下是否有下架商品,如果有就需要从活动商品中剔除。


当然,下架的时候可以直接删除缓存的活动商品,但是活动是从marketing系统中load出来的,就算我将cache里的活动商品删除,当下次再从marketing系统中load活动商品时候还是会有下架商品。


当然这只是举例,一个场景有不同的实现方法。


下图中左右两边是两个不同的集合:



左边是营销域中的可用商品ids集合,右边是营销域中活动商品ids集合,中间计算出两个集合的交集。


SADD set:marketing:product:available:ids 1000100 1000120 1000130 1000140 1000150 1000160


SMEMBERS set:marketing:product:available:ids

1) "1000100"

2) "1000120"

3) "1000130"

4) "1000140"

5) "1000150"

6) "1000160"


SADD set:marketing:activity:product:ids 1000100 1000120 1000130 1000140 1000200 1000300


SMEMBERS set:marketing:activity:product:ids

1) "1000100"

2) "1000120"

3) "1000130"

4) "1000140"

5) "1000200"

6) "1000300"


SINTER set:marketing:product:available:ids set:marketing:activity:product:ids

1) "1000100"

2) "1000120"

3) "1000130"

4) "1000140"


在一些复杂的场景中,也可以使用SINTERSTORE命令将交集计算后的结果存储在一个目标集合中。这在使用pipeline命令管道中特别有用,将SINTERSTORE命令包裹在pipeline命令串中可以重复使用计算出来的结果集。


由于Redis是Signle-Thread单线程模型,基于这个特性我们就可以使用Redis提供的pipeline管道来提交一连串带有逻辑的命令集合,这些命令在处理期间不会被其他客户端的命令干扰。


5)Zset


Zset排序集合与Set集合类似,但是Zset提供了排序的功能。在介绍Set集合的时候我们知道Set集合中的成员是无序的,Zset填补了集合可以排序的空隙。


Zset最强大的功能就是可以根据某个score比分值进行排序,这在很多业务场景中非常急需。比如,在促销活动里根据商品的销售数量来排序商品,在旅游景区里根据流入人数来排序热门景点等。基本上人们在做任何事情都需要根据某些条件进行排序。


其实Zset在我们应用系统中能用到地方到处都是,这里我们举一个简单的例子,在团购系统中我们通常需要根据参团人数来排序成团列表,大家都希望参加那些即将成团的团。


下图是一个根据团购code创建的Zset,score分值就是参团人数累加和:



ZADD zset:marketing:groupon:group:codes 5 G_PXYJY9QQFA 8 G_4EXMT6NZJQ 20 G_W7BMF5QC2P 10 G_429DHBTGZX 8 G_KHZGH9U4PP


ZREVRANGEBYSCORE zset:marketing:groupon:group:codes 1000 0

1) "G_W7BMF5QC2P"

2) "G_ZMZ69HJUCB"

3) "G_429DHBTGZX"

4) "G_KHZGH9U4PP"

5) "G_4EXMT6NZJQ"

6) "G_PXYJY9QQFA"


ZREVRANGEBYSCORE zset:marketing:groupon:group:codes 1000 0 withscores

 1) "G_W7BMF5QC2P"

 2) "20"

 3) "G_ZMZ69HJUCB"

 4) "10"

 5) "G_429DHBTGZX"

 6) "10"

 7) "G_KHZGH9U4PP"

 8) "8"

 9) "G_4EXMT6NZJQ"

10) "8"

11) "G_PXYJY9QQFA"

12) "5"


Zset本身提供了很多方法用来进行集合的排序,如果需要score分值,可以使用withscore字句带出每一项的分值。


在一些比较特殊的场合可能需要组合排序,可能有多个Zset分别用来对同一个实体在不同维度的排序,按时间排序、按人数排序等。这个时候就可以组合使用Zset带来的便捷性,利用pipeline再结合多个Zset最终得出组合排序集合。


二、案例:沪江团购系统大促hot-top接口cache设计


以沪江团购系统大促hot-top接口cache设计为例,我们总结了Redis提供的5种数据类型的各自特点和一般的使用场景。但是我们不仅仅可以分开使用这些数据类型,我们完全可以综合使用这些数据类型来完成复杂的cache场景。


下面我们分享一个使用多个Zset、String来优化团购系统前台接口的例子。由于篇幅和时间限制,这里只介绍跟本次案例相关的信息。

注:hot-top接口是指热点、排名接口的意思,表示它的浏览量、并发量比较高,一般大促的时候都会有几个这种性能要求比较高的接口。


我们先来分析一个查询接口所包含的常规信息。


首先一个查询接口肯定是有query condition查询条件,然后是sort排序信息、最后是page分页信息。这是一般接口所承担的基本职责,当然,特殊场景下还需要支持master/slave replication时关于数据session一致性的要求,需要提供跟踪标记来回master查询数据,这里就不展开了。


我们可以抽象出这几个维度的信息:


  • querycondition:查询条件,companyid =100,sellerid=1010101诸如此类。

  • sort:排序信息,一般是默认一个列排序,但是在复杂的场景下会有可能让接口使用者定制排序字段,比如一些租户信息列。

  • page:分页信息,简单理解就是数据记录排完序之后的第几行到第几行。


由于这里我们纯粹用Redis来提高cache能力,不涉及到有关于任何搜索的能力,所以这里忽略其他复杂查询的情况。其实我们在复杂的地方使用了Elastcsearch来提高搜索能力。


上述我们分析总结出了一个查询接口的基本信息,这里还有一个有关于高并发接口的设计原则,就是将hot-top接口和一般search接口分离开,因为只有分而治之才能分别根据特点选用不同的技术。


如果我们不分职责将所有的查询场景封装在一个接口里,那么在后面优化接口性能的时候基本就很麻烦了,有些场景是无法或者很难用cache来解决的,因为接口里耦合了各种场景逻辑,就算勉强能实现性能也不会高。


前面做这些铺垫是为了能在介绍案例的时候达成一个基本的共识。现在我们来看下这个团购系统的hot-top接口的具体逻辑。

注:在大促的时候需要展现团购列表,这个接口的访问量是非常大的,团购活动需要根据参团人数倒序排序,并且分页返回指定数量的团列表。我们假设这个接口名为getTopGroups(getTopGroupsRequestrequest)。


1)query condition查询条件问题


我们来仔细分析下,首先不同的查询条件从DB里查询出来的数据是不一样的,也就是说查询出来的团列表是不一样的,可能有company公司、channel渠道等过滤条件。


由于一个团购活动下不会有太多团,顶多上百个是极限了,所以一个查询条件出来的团列表也顶多几十个,而且根据场景分析热点查询条件不会超过十个,所以我们选择将查询条件Hash出一个code来缓存本次查询条件的全量团列表集合,但是这些结果集是没有任何排序的。


2)sort排序问题


再看根据参团人数排序问题,我们立刻就可以想到使用Zset来处理团排序问题,因为只有一个排序维度,所以一个Zset就够了。我们使用一个Zset来缓存所有团的参团人数集合,它是一个全量的团排序集合。


那么我们如何将用户的查询条件出来的团列表根据参团人数排序呢?刚好可以使用Zset的交集运算,直接计算出当前这个集合的Zset子集。


3)page分页问题


通过对已经排序之后的团列表Zset使用Zrange来获取出分页集合。我们来看下完整的流程,如何处理查询、排序、分页的。


下图从query condition计算Hash Code,然后通过DB查询出当前条件全量团列表:



zset:marketing:groupon:hottop:available:groupkey表示全量团的参团人数,用一个Zset来缓存。接着将这两个Zset计算交集,就可以得出当前查询所需要的带有参团人数的Zset,最后在使用Zrevrange获取分页区间。


ZADD zset:marketing:groupon:hottop:condition:2986080 0 G4ZD5732YZQ 0 G5VW3YF42UC 0 GF773FEJ7CC 0 GFW8DUEND8S 0 GKPKKW8XEY9 0 GL324DGWMZM

(integer) 6


ZADD zset:marketing:groupon:hottop:available:group 5 GN7KQH36ZWK 10 GS7VB22AWD4 15 GF773FEJ7CC 17 G5VW3YF42UC 18 G4ZD5732YZQ 32 GTYJKCEJBRR 40 GKPKKW8XEY9 45 GL324DGWMZM 50 GFW8DUEND8S 60 GYTKY4ACWLT

(integer) 10


ZINTERSTORE zset:marketing:groupon:hottop:condition:interstore 2 zset:marketing:groupon:hottop:condition:2986080 zset:marketing:groupon:hottop:available:group

(integer) 6


ZRANGE zset:marketing:groupon:hottop:condition:interstore 0 -1 withscores

 1) "GF773FEJ7CC"

 2) "15"

 3) "G5VW3YF42UC"

 4) "17"

 5) "G4ZD5732YZQ"

 6) "18"

 7) "GKPKKW8XEY9"

 8) "40"

 9) "GL324DGWMZM"

10) "45"

11) "GFW8DUEND8S"

12) "50"


ZREVRANGE zset:marketing:groupon:hottop:condition:interstore 2 4 withscores

1) "GKPKKW8XEY9"

2) "40"

3) "G4ZD5732YZQ"

4) "18"

5) "G5VW3YF42UC"

6) "17"


有了返回的团code集合之后就可以通过mget来批量获取String类型的团详情信息,这里就不贴出代码了。


由于篇幅和时间关系,我们不展开太多的业务场景介绍了。这其中还涉及到计算cache过期时间的问题,这也跟促销活动的运营规则有关系,还涉及到有可能query condition hash冲突问题等,但是这些已经不与我们本节主题相关。


下一期我们将会着重讲讲Redis内存数据结构与编码,弄清Redis内部到底是如何支持这5种数据类型的。欢迎大家留言讨论。


作者:王清培

来源:深度训练订阅号

dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn



近期热文

面对“恐龙级”老旧系统,怎样用微服务实现敏捷交付?

2周内交付85%以上需求,阿里工程师有哪些策略?

你的企业适合落地AIOps吗?落地后的运维人路在何方?

打开运维团队思路:运维工具设计的套路你都知道吗?

取舍有道:看移动云数据库自动化运维平台建设之路


登录查看更多
0

相关内容

Redis 是一个使用 C 语言写成的,开源的 key-value 数据库。
【实用书】Python爬虫Web抓取数据,第二版,306页pdf
专知会员服务
117+阅读 · 2020年5月10日
机器学习速查手册,135页pdf
专知会员服务
341+阅读 · 2020年3月15日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
81+阅读 · 2020年1月13日
携程用ClickHouse轻松玩转每天十亿级数据更新
DBAplus社群
11+阅读 · 2019年8月6日
【数据中台】什么是数据中台?
产业智能官
17+阅读 · 2019年7月30日
PHP使用Redis实现订阅发布与批量发送短信
安全优佳
7+阅读 · 2019年5月5日
亿级订单数据的访问与储存,怎么实现与优化
ImportNew
11+阅读 · 2019年4月22日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
五步帮你实现用户画像的数据加工
云栖社区
6+阅读 · 2018年2月4日
优化哈希策略
ImportNew
5+阅读 · 2018年1月17日
Spark的误解-不仅Spark是内存计算,Hadoop也是内存计算
Arxiv
102+阅读 · 2020年3月4日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
5+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2018年3月6日
VIP会员
相关资讯
携程用ClickHouse轻松玩转每天十亿级数据更新
DBAplus社群
11+阅读 · 2019年8月6日
【数据中台】什么是数据中台?
产业智能官
17+阅读 · 2019年7月30日
PHP使用Redis实现订阅发布与批量发送短信
安全优佳
7+阅读 · 2019年5月5日
亿级订单数据的访问与储存,怎么实现与优化
ImportNew
11+阅读 · 2019年4月22日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
五步帮你实现用户画像的数据加工
云栖社区
6+阅读 · 2018年2月4日
优化哈希策略
ImportNew
5+阅读 · 2018年1月17日
Spark的误解-不仅Spark是内存计算,Hadoop也是内存计算
相关论文
Arxiv
102+阅读 · 2020年3月4日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
5+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2018年3月6日
Top
微信扫码咨询专知VIP会员