【人工智能】迈克尔·乔丹:我们并非处于人工智能的大爆炸时代

2017 年 10 月 25 日 产业智能官 Michael Jordan

迈克尔·乔丹教授(Prof. Michael Jordan)与篮球之神迈克尔·乔丹同名同姓,也同样在所在领域鼎鼎大名,在美国学习计算机专业的人大多知道他。他是美国加州大学伯克利分校的教授,世界著名的人工智能专家,美国工程院、科学院和文理学院三院院士。

乔丹教授获奖无数,如果将他获得的荣誉称号和论文奖列出来,一张 A4 的纸都写不下。乔丹教授最大的贡献在于提出了一种新型的人工神经网络(Recurrent Neural Networks,复发神经网络),这是今天深度学习的基础之一。此外,他指导学生实现了贝叶斯网络的算法,使得它成为了今天通用的机器学习工具。


本文由混沌大学(ID:dfscx2014)授权转载,根据乔丹教授 9 月 9 日在混沌大学的课程《人工智能-机器学习:观点与挑战》整理而成混沌大学是一所没有围墙的互联网创新大学,遍邀全球名师,拓展认知边界,奉献最专业、最实用、最顶级的互联网创新课程。





Michael Jordan


目前,人们讲到人工智能和机器学习,可能还是觉得它很复杂。

 

事实上,当你听过我的课程,就会发现,关于这个话题,有很多还停留在概念性、战略性的阶段。当然,也有一些投入实际应用的技术,但这背后的理论,还是非常基础和简单的。

 

人工智能与机器学习,其实还远远不是一门基础扎实的工程学科,它并不能为现在用数据分析问题提供强大且可拓展的解决方案。

 

因此,我们并不能将人工智能与机器学习的发展简单理解为一个神迹,如同高楼非一夜而起,它是必须要经历长时间的发展的。

 

大家首先要意识到,在这一领域,我们仍处于非常初级的阶段。很多事情我们还不了解,现今的我们并非处于一个人工智能的神奇大爆炸时代。可以说,我们有可能要花上百年的时间,这个高楼大厦才能真正地建立起来。



准确认知人工智能的现在与未来


抛弃那些外界的宣传,我们需要实际且准确地理解人工智能。我们来讲,目前的人工智能有哪些可能性,以及,哪些技术还没有实现的可能。


计算机视觉


  • 可能:在可视场景中标记对象

  • 目前尚无可能:对视觉场景的常识理解

 

比如,一个会议室的摄像机,把它连接到电脑上后,让它区分哪些是人脸。在目前,人工智能也许可以标记对象,但却不能理解这个场景。

 

作为人类,我知道这个会议室有很多人,出口在哪里,我要小心台阶不能掉下去。这是我的常识性理解,但计算机是做不到的。


语音识别


  • 可能:多语种语音到文本和文本到语音的转换

  • 目前尚无可能:对听觉场景的常识性理解

 

我的声音可以通过话筒接到电脑中并转化为文本,转化为语音。但如上所述,电脑并不能对文本背后的常识进行理解。

 

人们可以马上理解一个很复杂的句子来预测下一步行动,但计算机做不到。


自然语言处理


  • 可能:最低限度的翻译和问答

  • 目前尚无可能:语义理解、对话

 

自然语言中有很多东西,机器是做不到的。机器只能死记硬背,却没有办法真正地回答问题。

 

当你和电脑交流的时候,它可以回答你「中国最大的城市是哪一个」,那是它通过「中国」、「城市」、「最大」这三个关键词,在百度搜索的答案。

 

但如果你的问题是「中国不在河边的第二大城市是哪一个」,电脑给你的答案一定是对你一点用都没有的。因为在此之前可能从来没有人做过这个问题的相关数据,没有这个问题答案的数据列表。

 

但在未来的十年,上述被列为「尚无可能」的部分,将至少可实现基本形式。

 

十年,就技术而言,是一个很长的时间窗口了。事实上有一些技术已经开始出现,只是目前在比较原始初级的阶段而已。

 

比如自动驾驶汽车以及自动驾驶出租车,它们还是会出现的。尽管不会是超级智能,但肯定会越来越好。

 

但请注意,人工智能系统仍然是非常有限的智能系统。我相信,我的 AI 同事们也会赞同我的观点:我们不太可能看到和人有同等智力的灵活性与创造性的 AI 系统。

 

首先,人类每时每刻都在以新的方式思考怎样用新的语言来表述,就像我现在讲的每一句话都是有创造性的,我在讲话中可以不断讲新的内容以及新的理念,使用隐喻、反讽等修辞。

 

在现实中,AI 系统还做不到。AI 可以帮你做一些基础工作,比如帮你在网上订一张票,但是它无法和你谈人生。

 

此外,人类还非常善于做新的抽象推理


比如,「Blank 从上海走到杭州只花了 3 个小时」。作为人类,你会做很多推理:Blank 会移动,而且从上海走到杭州只花了三个小时,它的运动速度一定很快。那么,你会针对 Blank 问很多问题。

 

但 AI 系统就做不到,它需要反复、重复用海量的数据才能得出一个答案。

 

最后,人非常擅长计划和规划。而 AI 系统只是擅于捕捉目前的数据,而不可能对未来做出一个长期的、有条不紊的规划。

 

很多人在讲「超级人类 AI」,这类人一定没有在 AI 领域工作过,他们根本就不知道 AI 领域中存在的技术问题有多难。


AI 系统可以知道世界所有的城市、餐厅、电影院,然而它也只知道这些事实而已。

 

所以,我不相信所谓的「超级人类AI」,也不相信 AI 会比人更聪明。


人们觉得 AlphaGo 很厉害,是因为觉得一般玩围棋的人就很聪明了,那能打败玩围棋的人肯定更聪明。


这是有误解的。人知道怎么还贷款,上什么学校,怎么和同伴做智慧交流,这些事都是 AlphaGo 做不到的。

 

其实,AlphaGo 只是通过无数对棋盘的模拟,非常机械地、不断重复地复盘,十几亿、几百亿次地进行学习。这背后没有什么创造力,只是无数次的重复工作。


所谓的「智能」,是我们根据参数汇集起来的数据算法,它们只能复制、模仿、模拟人类的行动,而不是真正的智能说到底,相比我们真实的世界,围棋的复杂程度要低很多,因为真实的世界充满不确定性。


我觉得,有生之年不会出现这个奇点了。



传统的机器人算法不能适应未来


那么,什么是值得大家担心的呢?

 

我前面讲到,所谓的超人类智能系统,我们是不应该担心的。而正好相反的是,看似智能,实则不够智能的这些系统,却是值得我们警惕的。


很多媒体提到 AI 的时候,讲到的是视觉、语音的方面。但我们未来涉及到城市规划、推荐系统、医学诊断等,都不再是传统单一机器人的问题。

 

这是完全不同类型的问题。


一个机器人的某一错误我们是可以控制的。比如,机器人走到舞台边缘,探测到下面将有一个高度落差,它会知道停下来。

 

但如果是一系列问题呢?又或者,是很多机器人一起呢?

 

如果大楼发生火灾,这个机器人就不会知道该怎样逃出去。因为,这是一系列的决策,涉及到你从哪里转移到哪里,还需要和其他人的合作。


比如,大家都从同一个逃生通道出逃,就会出现堵塞,那么,就要选择换其他的道路。在这种情况下,机器人是做不到的,这样的算法是非常难的。


如果你用过去传统的机器人研发算法去应用到城市规划建设等领域,就会出现很多无法解决的重大问题:



NO.1:大规模多重相关决策的错误控制


搜索引擎给你一个错误的推荐建议,如果没有人因此死亡,就不会出现什么大错漏。顶多你会觉得这个搜索引擎不好用,再换一个就完了。

 

但假设这个推荐是医疗诊断意见呢?如果这个意见出现错误,那真的是会出人命的。而且,我们已经看到这件事情的发生了。

 

即便是在金融服务领域,一旦出现错误,也可能会引发市场的大动荡。交通也是如此,如果连公交走向都出现问题,就极有可能发生车辆碰撞,整个城市的交通陷入瘫痪。

 

因此,一旦扩大到这些领域,我们就不能再以传统应用到单一机器人的算法去做这种大规模的事情,必须要有新算法。

 

但事实上,在这一点上,我们远未达到。目前,我们所沿用的思路都是比较传统或通用的,并没有意识到在这个层级上还需要做很多事情。



NO.2:如何在竞争环境中共享数据


很多公司手握数据,却不愿与人分享。

 

假如,有一个黑客找出了新的办法来骗钱,他针对了某一家公司 A。那么,A 公司就会从这次欺诈当中学到新东西,可以未来避免同样的情况。

 

但因为当初的攻击只针对了 A 公司,其他的公司并不知道,因此也就不知道如何改进自己的系统了。

 

表面上看,A 公司只把这个技术掌握在自己手里,让其他人学不到,这好像有点自私。因为,他没有从整个行业的角度去考虑问题。如果这家公司把这个数据分享给所有人,整个行业就可以一起改善这个算法。

 

但现在大家都不愿分享,其实一方面是技术原因,一方面也是法律的原因。



NO.3:大规模的云端互动


大家都在谈云计算,所有的东西都在云上,让人们感觉到非常便利。

 

但这些智能设备,并不是云设备,而是端设备。

 

事实上,我们未来将要接触的设备,都会是所谓的端设备,它们没有时间将数据上传到云中。如果你和机器人的每一次对话都要上传到云,就会导致速度跟不上。

 

比如,汽车做智能,「我在这里到底要不要转弯」这样的问题,是不可能每一次都实时和云进行交互的。

 

因此,要把端设备和云连接起来,还要实时交互,这两者之间是存在极大挑战的,我们现在也不知道该怎么做。



NO.4:如何实现公平,保证品质、保持多元化


收集大量的数据并没有问题,但这些数据是可能产生偏差的。

 

比如,你出于某种原因不喜欢某类人而没有把他们纳入你的样本,但以这样的样本去做预测其结果本身就是存在偏差和偏见的。



NO.5:稳健性和安全性问题


我们在报纸上经常讲到所谓的超级 AI,发生了某种革命。


但请记住我今天讲的话:很多技术还远远不能实现,很多问题还有待解决。


比如,无人驾驶汽车怎样确保在所有气候条件下,在所有的路况前提上,每一台车都可以保证安全驾驶呢?这其实也是一个极大的挑战。


甚至在今天,传统的单一机器人,也仍有很多问题没有解决。


还有失业浪潮。每一次工业革命,都有很多人会因此失去工作。但值得注意的是,过去的失业浪潮是花费三五十年完成的。但接下来,很多工作可能在 5-10 年内就会被完全取代,这是一个新的趋势,贫富差距也会随之进一步拉大。

 

并且,人工智能可能会被居心叵测的人滥用。AI 本身不存在邪恶与正义,主要还是看它被谁利用。比如,我们现在的网络安全就是一个很严重的问题。



现阶段人工智能的商机


我想向大家介绍三家公司,我也是这三家公司的科学顾问委员会的委员,因此有更多的信息分享。


United Masters


这家公司是专门做音乐作品的。

 

事实上,音乐市场在几十年前是为几十家大公司所控的,它们会签几个音乐歌手,然后在市场上大规模推广。而作为消费者,你没什么选择,也就那么几个作曲家和歌手。

 

但你看现在的音乐市场,已经并非仅限于几位少数的歌手了。在网上,有很多音乐人才,他们会在网上播放自己制作的音乐视频,也会有越来越多的人听他们的音乐。这和以前听音乐的人数相比,达到了一个全新的数量级。

 

问题是,这些歌手没有一个很大的商业市场,在市场上最受欢迎的音乐,一般还是大公司做出来的。

 

United Masters 的目标,就是希望有更多的人从事自己所喜欢的音乐创作,并可以以此为生。

 

这家公司怎么实现这一目标呢?就是连接数据,用数据分析。

 

比如一个年轻的音乐人,他写了很好的歌,有几万名死忠粉。但其实他本人并不知道自己有这么多追随者。

 

谁知道这个数据呢?网站,比如微信。

 

United Masters 就会把这个数据拿过来,告诉这个歌手,你的粉丝有多少,分布在哪里,接下去可以做什么。比如,你可以去粉丝多的地方开演唱会。

 

而且,这家公司还会告诉你如何针对自己的粉丝去打造一些产品。

 

比如,有个粉丝要来这个歌手北京的现场演唱会,那么,歌手可以给这个粉丝一个 VIP 后台通行证,让他可以到后台见面。很多粉丝是很看重这种和偶像亲密接触的机会的。

 

所以,通过这些数据的汇总,就可以创造出盈利模式。只要有人对这些数据感兴趣,就可以获取这些数据。因此,慢慢地,这家公司的口碑就建立起来了。

 

这就是非常好的商业模式——通过一个小的数据交换。传统的唱片公司对歌手的抽成要到85%以上,但对于 UnitedMasters 来说,它只抽 10~15%,就打造了这样一个全新的市场。


Jibo


这家公司做家庭机器人很多年了。未来 10~20 年,我们每个人家里可能都会出现一个家庭机器人。

 

目前,很多人还是把家庭机器人当作玩具,它们在家里走来走去会发出很有意思的声音,但真正时候帮助到人们的生活,现在还是很少。但是,所谓的家庭助手或者家庭秘书,却是不一样的。

 

Jibo 三年前推出了一个机器人,长得很像手机。但是它会跟随你,像眼睛一样看着你,给你拍照片。你可以对它说:Jibo,今天晚上我要在家里开派对,你帮家里的人们拍照片好吗?

 

Jibo 就会给你拍照。它还会跟你说看这儿、看那儿,可以把整个派对的影像资料保留下来。

 

这听上去是一个很有意思的应用,但要把它打造成一个规模性的应用还是很难。三年后,这家公司终于感觉找到了方向,推出了一款新的家用社交机器人。

 

这个机器人拥有电子眼睛、耳朵和声音,可以捕捉照片、视频通话,也可以做提醒、订餐、发送邮件等这些辅助工作。它是一个开放式的平台,可以让人们不断开发新的应用。

 

这和手机上的应用是不同的。手机的应用并非机器学习的应用。但这中机器人的平台应用,会进行适应性的调整,进行自我学习。

 

而 Jibo 肯定不是唯一一个往这个的方向努力的公司。

 

我相信可能在中国、日本也是会对这种机器人非常感兴趣。



蚂蚁金服


蚂蚁金服在中国发展非常迅速,我现在是蚂蚁金服科学智囊团的主席。他们也是中国首家有这么一个科学智囊团的组织,他们希望智囊团可以帮助这家企业把握未来的方向。

 

这家公司比我所知道的任何一家西方公司成长都要快。

 

美国还是一个信用卡加现金的社会。尽管美国有一个 Paypal,与支付宝有点类似,但是它的规模也不过是支付宝的十分之一,并且也不是所有人都在用。

 

也许是受益于中国没有信用卡这个产业的束缚,使得支付宝一下子实现了移动支付的巨量增长。蚂蚁金服手握大量的数据,它知道你买了什么,了解很多关于你的个人信息。

 

它使贷款变得前所未有的容易。这不是表面上你在手机上按一个键说「给我钱」这么简单,其背后蕴含着大量的机器学习。这涉及到机器学习中的「欺诈监测」:如果你很简单地让人们贷到款,很多人是会来骗你的。



总结:人工智能的商业模式,是要创造一个市场,而非一个算法


传统的推荐,都是针对个人。

 

但这里的问题是,如果有一家很好的餐厅,它被推荐给很多人,那么大家都跑到这家餐厅去,就需要排长队,人们的体验就会很糟糕,反过来给差评和抱怨。


如此,整个系统就开始崩溃,形成恶性循环。

 

你必须要去创造一个市场,而非一个简单的算法。

 

比如,在 APP 上面,不仅仅是向客户推荐某一家餐厅。除了让客户看到自己附近有什么餐厅之外,你还要让餐厅看到自己今晚可以供应多少食材,我今天接了一场婚宴之后,还剩下多少个散客的位置。

 

甚至,你可以了解一下旁边的竞争对手餐厅,他们有没有满座。如果旁边满座了,那么对我而言就是一个机会,我可以打折吸引更多的人流到的餐厅。

 

你要结合客户和商户两端的需求。


这不仅是一个应用的事情。现在很多公司已经着手在研究这方面的工作。当然,这个过程要充分考虑人们不同的喜好和需求,要掌握大量的数据。




深度学习是泡沫吗?何时会破?


有人在 Quora 上问了一个匪夷所思的问题:“深度学习的泡沫何时会破?”在短短的十几个小时内,该问题就得到了 18 个回应,而且每个回应都颇有深度。下面的内容翻译自吴恩达和微软数据科学家 Tim Scarfe 对该问题的回应。

吴恩达:

在 100 多年前也曾经出现过有关电力的炒作,但那个所谓的泡沫到现在都没有破,相反,我们现在根本离不开电力!

深度学习为我们带来了很多价值,它被广泛应用在多个领域,如 Web 搜索、广告、语音识别、推荐系统等,所以毫无疑问,这项技术会与我们同在。深度学习技术与其他人工智能工具(图像模型、智能决策、KR 等)的结合正在改变着我们的各行各业,它的影响力将不仅限于技术行业。

然而,在技术社区之外,人们对”情感人工智能“似乎给予了过多的期望。我与一些 CEO 聊过这方面的问题,他们把人工智能当成解决技术问题的灵丹妙药。看来,在深度学习方面确实存在一些泡沫,我希望这些泡沫在变大之前就破掉,越快越好。

Tim Scarfe(微软数据科学家,机器学习博士):

我感觉深度学习比预想的要更加普及。深度学习为预测技术带来了变革,而且在序列建模(如自然语言处理、语音识别)、局部空间处理(如计算机视觉)和增强学习方面具备无以伦比的性能。

在很多情况下,深度学习算法的性能相比之前的“频率学派”算法有了阶段性的进步。在拥有大数据集的情况下,执行关键性预测任务的性能优势尤为明显。

上图展示了 ImageNet 计算机视觉检测技术的快速发展,其中包括 2012 年 Alex Krizhevsky 使用他的卷积神经网络击败了前作。今年,一个来自中国的团队将错误率降低到了 2.2%,看来这场竞赛似乎要告一段落了。

我们也看到过去 8 年多在语言处理和语音识别方面出现了类似的进步。今年,微软通过基于 CNN 和双向 LSTM 的架构实现了语音识别的 human parity。

人们常说这些要归因于过去 10 年的数据大爆炸和计算大爆炸。实际上,这些大爆炸就是性能得到大幅提升的主要推动力,而人工神经网络不过是一项古老的技术。我不认为我们会在这两方面停下脚步,不是吗?

不过我想说的是,这不仅仅是一次思维的转型,或仅仅是一种全新的编程方式。

1.更少地强调特征提取

在古老的频率学派架构里,数据科学家需要掌握一些领域知识来完成特征提取。所有的算法都用来解决优化问题,这些问题与特征是混杂在一起的。这并不是说深度学习架构就不包含领域知识,图像的 CNN 模型局部空间依赖和 RNN 模型临时依赖不就是吗?关键的差异在于,NN 模型会自己学习表征层次,而这些表征在很多情况下可以很好地工作。

2.新奇预测(novel prediction)架构

我想,我们现在的优势是可以在一个框架内搭建出一个端到端的新奇预测架构,而且可以很快地训练模型,并在云端操作模型。

在以前,我们需要回归和分类算法,而现在我们使用预测架构。

上面的图片展示了物体的分割和局部化网络——Mask R-CNN。请留意我们是如何使用 CNN 来检测图像特征的,我们有一个区域提议网络(region proposal network)和该区域内的掩膜回归(mask regression),它们都处于同一个网络内。任何一个熟悉深度学习工具包和云端人工智能训练平台(如微软 Azure)的人都可以重现、训练和操作这些东西。

深度学习实际上是一种新型的编程模式,也被称为“可微编程(differentiable programming)”。

3.创新架构正在出现

这个可以参考 GAN 或混合专家(Mixture of Experts)模型。

4.业界在拥抱深度学习和创新

微软和谷歌已经在他们的云端安装了一些硬件来加速深度学习,也因为深度学习与生俱来的灵活预测架构,得到了广泛的应用。这一领域或许有点炒作过度了,但对于创新来说是一件好事,因为每个人都被调动起来了,变革的速度在加快。

5.超越深度学习

我并不认为我们剩下的只有深度学习。我个人相信基于模型的贝叶斯机器学习可能会回归,因为它可以在有效数据不足的情况下对真实世界的领域知识进行建模,而深度学习需要大量的数据!



人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“特色小镇”、“赛博物理”、“供应链金融”


点击“阅读原文”,访问AI-CPS OS官网




本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





登录查看更多
1

相关内容

斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
专知会员服务
99+阅读 · 2020年3月19日
中科大-人工智能方向专业课程2020《脑与认知科学导论》
2019中国硬科技发展白皮书 193页
专知会员服务
81+阅读 · 2019年12月13日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
迈克尔 · 乔丹:我讨厌将机器学习称为AI
数据玩家
4+阅读 · 2018年3月22日
CCCF专栏:黄铁军| 也谈强人工智能
中国计算机学会
5+阅读 · 2018年2月15日
【人工智能】人工智能的应用边界
产业智能官
4+阅读 · 2018年1月9日
人工智能的阴暗面
计算机与网络安全
6+阅读 · 2018年1月8日
【人工智能】谭铁牛院士:人工智能新动态
产业智能官
8+阅读 · 2018年1月5日
【深度】谭铁牛院士谈人工智能发展新动态
中国科学院自动化研究所
4+阅读 · 2017年12月28日
数学不好能搞人工智能吗?
算法与数学之美
3+阅读 · 2017年11月27日
一张通往计算机世界的地图
中科院物理所
8+阅读 · 2017年10月12日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Bidirectional Attention for SQL Generation
Arxiv
4+阅读 · 2018年6月21日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
4+阅读 · 2018年3月22日
VIP会员
相关VIP内容
相关资讯
迈克尔 · 乔丹:我讨厌将机器学习称为AI
数据玩家
4+阅读 · 2018年3月22日
CCCF专栏:黄铁军| 也谈强人工智能
中国计算机学会
5+阅读 · 2018年2月15日
【人工智能】人工智能的应用边界
产业智能官
4+阅读 · 2018年1月9日
人工智能的阴暗面
计算机与网络安全
6+阅读 · 2018年1月8日
【人工智能】谭铁牛院士:人工智能新动态
产业智能官
8+阅读 · 2018年1月5日
【深度】谭铁牛院士谈人工智能发展新动态
中国科学院自动化研究所
4+阅读 · 2017年12月28日
数学不好能搞人工智能吗?
算法与数学之美
3+阅读 · 2017年11月27日
一张通往计算机世界的地图
中科院物理所
8+阅读 · 2017年10月12日
相关论文
Top
微信扫码咨询专知VIP会员