人工智能的阴暗面

2018 年 1 月 8 日 计算机与网络安全 风辞远

信息安全公益宣传,信息安全知识启蒙。

加微信群回复公众号:微信群QQ群16004488

加微信群或QQ群可免费索取:学习教程

教程列表见微信公众号底部菜单


我们在一片对 18 岁照片的花样赞美中,迎来了又一个新年。

按说新年应该是开心的时候,但是刚刚跨年结束,抬头一看居然要上班了…不由得悲从心来…所以今天我们打算说点不那么开心的事。

最近几天,各种对 2018 年的科技预测层出不穷,其中对 AI 的畅想占了大头,内容差不多是一片喜庆祥和。

但事有两来,当我们开始从 AI 中收获价值的时候,技术升级后带来的潜在风险也在升温。这就像汽车当然好过牛车,但汽车也会带来各种各样的交通事故。我们当然不能因此禁止汽车上路,但是也不能对交通问题视而不见。

今天我们来预测几个,很可能在 2018 年进入我们眼帘的「人工智能负能量」。

毕竟做好准备,是解决问题的前提条件。

一、人工智能伦理问题开始出现个案

2017 年 1 月,在加利福尼亚州阿西洛马举行的 Beneficial Al 会议上,近千名人工智能相关领域的专家,联合签署了著名的《阿西洛马人工智能 23 条原则》。

随后,各种关于人工智能伦理道德的讨论、会议,以及相关协会和科技组织开始出现在公众视野里。

《23 条原则》的主要内容,就是呼吁人工智能不能损害人类的利益和安全,同时人工智能必须可以被人类控制,同时人类要尽量尊重人工智能和机器人的安全。

听起来颇有点科幻的味道,但是在各行各业开始部署 AI,尤其开始利用 AI 进行自动化决策的时候,人工智能的伦理与道德问题或许真的会浮出水面。

比如说,自动驾驶车辆在马上要发生事故时,是优先保护路人还是乘客?假如 AI 诊断系统,给出的建议是安乐死,那么它算是杀人吗?为了避免更大损失,AI 系统是否能打破规则,自行其是?

这其中最著名的,大概就是去年谷歌批评上海交大某团队进行的「看脸定罪犯」研究。引发了媒体对于 AI 价值观的大量讨论。

在各个产业场景开始使用 AI 技术时,随之而来的边界问题、责权问题、道德选择问题这些在实验室中不会出现的矛盾将很可能被引发。

人类还从未真正讨论过这些。假如 2018 年人工智能的落地化足够快,伦理问题的苗头或许会临近。

二、难以根治的的算法歧视

记得 2016 年,微软推出过聊天机器人 Tay,却因为用户教给它大量种族歧视和脏话,一天内就被暂时下线。这引出了一个极具争议的话题:机器学习会吸收人类的知识和信息来塑造自己,那么假如它吸收的信息含有大量「不那么纯良」的东西呢?

2017 年,算法歧视问题非但没有被解决,各种各样新的问题还应运而生。比如谷歌大脑会给女性图片打上很多关于家庭、弱势的标签,显然有悖于女权主义精神;而把黑人识别为大猩猩,则点燃了 AI 种族歧视的话题关注度。

所谓的算法歧视,对于普通消费者来说,最有可能在内容推荐和电商推荐两个地方感觉到。比如说消费者刚看过宽大的衣服,电商就推荐减肥药,很可能让消费者联想到算法在歧视自己胖;再比如打开今日头条这类软件的时候,大家可能都出现过这种情况:偶尔点了一个推荐来的猎奇或者伪色情内容,然后再一刷新。好嘛,蜂拥而至的类似内容啊,你本来想看的兴趣内容和专业内容瞬时间化为乌有。甚至你怎么点我不关心不喜欢,平台还是给你推荐。这就是因为算法的归类方式给你贴上了标签。这种歧视感也蛮严重的,好像背后有个人奸笑着对你说:「承认吧,你就是这么低俗…」

这类问题的根源,是机器学习技术进行个性推荐,今天还必须建立在两个逻辑的基础上:以过去算将来,以群体算个体。算法会吸收以前有过的经验来给你特定的某些东西,但很有可能歧视信息就包含在机器吸收的经验里。

在个性推荐系统越来越多场景应用可能的今天,我们恐怕短期内还难以根治算法的歧视。

三、私人数据与机器学习的矛盾日益凸显

人工智能和个人隐私,似乎从来都是一对天敌。

因为人工智能技术假如想要提供个性化、完全符合个人习惯的服务,那么就必然要学习和理解用户本身。而这其中,就涉及对用户私人数据的学习。

但出于隐私的考虑,以及对网络安全的不信任,大部分用户显然是不希望透露自己数据给机器的。

从而「鸡生蛋蛋生鸡」的矛盾就产生了。

近两年,用 AI 来读取用户个人数据这件事一直处在被压抑和不能提的状态。更早一点的时候,苹果和谷歌等大公司都推出过让 AI 读懂用户的产品,但很快就被舆论抨击给关停了。即使这样,谷歌去年推出的家用 AI 相机还是饱受诟病。

在 2017 年后半段,我们看到了 AI 芯片拉开了风云际会的争夺序幕。但是搭载 AI 芯片的硬件一定要有的放矢,有任务可以完成。于是让硬件读懂用户、让系统根据用户数据提供千人千面的服务,势必会重新回到公共视野里。

其实从大趋势上看,把个人数据交给机器似乎是人类不可避免的归宿。无论是医疗健康、金融服务还是社会安全,机器肯定都比人类更靠谱。只是这其中经历的不适感和安全风险是巨大的。

在 2018 年,无论是手机、音箱、穿戴设备、VR,在启用了机器学习能力后,似乎都要重新沾惹隐私数据这条红线。

究竟怎么处理这个矛盾,也是挺让人头疼的。

四、真假越来越难分

就目前来看,希望 AI 能像人一样对话和理解,显然还是为时过早的一件事。但是让 AI 来造假,似乎已经问题不大了。

此前我们讨论过视频和直播换脸的可能,其实从整个技术进度来看,基于 GAN 的仿真和替换技术正在整体成熟。无论是模拟替换音频还是视频文件,AI 都已经能够得心应手的处理。

但这肯定不会是什么好事。在著名的 Face2Face 软件推出的时候,国外网友就惊呼,假如跟我视频聊天的人被替换了怎么办?

而在开发框架和数据资源越来越丰富、算法越来越强劲的今天,大概我们可以很肯定的说:2018 年用 AI 来伪造视频音频将更加天衣无缝。

这是 AI 对未来技术的探索,却很可能引发社交媒体和网络传播的动荡:当我们看到的视频都可以完全造假的时候,这个世界还有什么可以相信呢?

假作真时真亦假,只能期望反 AI 造假的 AI 系统也尽快出现吧。

五、黑客攻击有更多花样

2017 年年末,谷歌 TensorFlow 被惊人的爆出框架漏洞,虽然是被白帽子找到,没有造成危险,但这还是点醒了我们一点:AI 并不安全。

至此,我们已经见识过了各种黑客攻击和 AI 技术结合的可能性:用 AI 来伪造文件信息实施攻击和诈骗;利用 AI 技术来提升黑客攻击效率;以 AI 系统为目标的攻击。随着 AI 和物联网体系的结合,未来物联网攻击中很可能也会加入 AI 的身影。

AI 技术的成熟,让网络黑客们找到了更多的目标、更多的工具以及更多的技巧。虽然 AI 同样给我们提供了各种保护互联网安全的方式。但无论如何,AI 带给了黑客更多可能性是毫无疑问的。

2017 年的网络安全世界并不平稳,各种各样的病毒和黑客肆虐不绝于耳。进入 2018,我们很可能会在这个战场看到更激烈的搏杀。

就像任何一种技术革新一样,AI 也同样在带来价值的同时创造了危险。而且凭借着识别和学习能力的特征,AI 带来的负面影响说不定会比过往更大。

但是无论如何,技术就是这么一步步推进的。更好的风景总是伴随着更难走的路途。认识风险,并探索解决方案,或许才是人类与 AI 相处时更舒服的方式。


人工智能浅析


人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。


人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。


人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。


定义详解


人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。


关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。


人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。


尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。


人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。


人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。


研究价值


例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。


通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。


这是智能化研究者梦寐以求的东西。


2013年,帝金数据普数中心数据研究员S.C WANG开发了一种新的数据分析方法,该方法导出了研究函数性质的新方法。作者发现,新数据分析方法给计算机学会“创造”提供了一种方法。本质上,这种方法为人的“创造力”的模式化提供了一种相当有效的途径。这种途径是数学赋予的,是普通人无法拥有但计算机可以拥有的“能力”。从此,计算机不仅精于算,还会因精于算而精于创造。计算机学家们应该斩钉截铁地剥夺“精于创造”的计算机过于全面的操作能力,否则计算机真的有一天会“反捕”人类。


当回头审视新方法的推演过程和数学的时候,作者拓展了对思维和数学的认识。数学简洁,清晰,可靠性、模式化强。在数学的发展史上,处处闪耀着数学大师们创造力的光辉。这些创造力以各种数学定理或结论的方式呈现出来,而数学定理最大的特点就是:建立在一些基本的概念和公理上,以模式化的语言方式表达出来的包含丰富信息的逻辑结构。应该说,数学是最单纯、最直白地反映着(至少一类)创造力模式的学科。


发展阶段


1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。


从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。


当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。


科学介绍


实际应用


机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。


学科范畴


人工智能是一门边缘学科,属于自然科学和社会科学的交叉。


涉及学科


哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论。


研究范畴


自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法。


意识和人工智能


人工智能就其本质而言,是对人的思维的信息过程的模拟。


对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。


弱人工智能如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。


而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。

登录查看更多
6

相关内容

人工智能(Artificial Intelligence, AI )是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支。
专知会员服务
124+阅读 · 2020年3月26日
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
195+阅读 · 2020年3月8日
IBM《人工智能白皮书》(2019版),12页PDF,IBM编
专知会员服务
20+阅读 · 2019年11月8日
Gartner 报告:人工智能的现状与未来
InfoQ
14+阅读 · 2019年11月29日
DTalk|自动化机器学习-人工智能的未来
机器之心
4+阅读 · 2018年9月15日
漫画: 什么是人工智能?
大数据技术
4+阅读 · 2018年1月19日
一份报告纵览人工智能的23个技术方向
科研圈
6+阅读 · 2018年1月9日
美国硅谷预测10年后的世界,再不懂你就落伍了
凤凰财经
4+阅读 · 2017年9月14日
关于人工智能(上)
七月在线实验室
4+阅读 · 2017年9月13日
Arxiv
8+阅读 · 2019年3月28日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
6+阅读 · 2018年4月3日
Arxiv
4+阅读 · 2018年3月19日
VIP会员
相关资讯
Gartner 报告:人工智能的现状与未来
InfoQ
14+阅读 · 2019年11月29日
DTalk|自动化机器学习-人工智能的未来
机器之心
4+阅读 · 2018年9月15日
漫画: 什么是人工智能?
大数据技术
4+阅读 · 2018年1月19日
一份报告纵览人工智能的23个技术方向
科研圈
6+阅读 · 2018年1月9日
美国硅谷预测10年后的世界,再不懂你就落伍了
凤凰财经
4+阅读 · 2017年9月14日
关于人工智能(上)
七月在线实验室
4+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员