作者:MJ Bahmani
来源: towardsdatascience,机器之心
GitHub 地址:https://github.com/mjbahmani/10-steps-to-become-a-data-scientist
R 语言
R 是一种用于统计计算和图的语言及环境。它是一个 GNU 项目,与贝尔实验室的 John Chambers 及其同事开发的 S 语言及环境类似。R 可以视为 S 的一种不同实现。二者存在一些重要差异,但使用 S 写的很多代码在 R 下运行时无需修改。
优点:
端到端开发到执行(一些 brokers package 允许执行,IB)
开发速度快(比 Python 的代码少 60%)
开源包多
成熟的量化交易包(quantstrat、quantmod、performanceanalyitics、xts)
社区最大
使用 rcpp 可以整合 R 和 C++/C
缺点:
比 Python 慢,尤其是在迭代循环和非向量化函数中
比 Matlab 绘图差,难以实现交互式图表
创建独立应用程序的能力有限
Python
Python 是一种用于通用编程的解释型高级编程语言,由 Guido van Rossum 创建并于 1991 年首次发布。Python 的设计强调代码可读性,使用了大量空格。它的结构使其在大规模和小规模编程中都能清晰明了。
优点:
端到端开发到执行(一些 brokers package 允许执行,IB)
开源包(Pandas、Numpy、scipy)
交易包(zipline、pybacktest、pyalgotrade)
最适合一般编程和应用程序开发
可连接 R、C++ 和其他语言的「胶水」语言
总体速度最快,尤其是在迭代循环中
缺点:
有一些不成熟的包,尤其是交易包
有些包与其他包不兼容或包含重叠
在金融领域的社区比 R 小
与 R 或 Matlab 相比,相同操作需要更多代码
追踪静默错误(silent error)可能需要很长时间(即使使用可视化调试器/IDE)
MATLAB
MATLAB(matrix laboratory)是一种多范型数值计算环境。作为 MathWorks 开发的一种专用编程语言,MATLAB 允许矩阵运算、函数和数据绘图、算法实现、用户界面创建,以及与用其他语言(包括 C、C++、C#、Java、Fortran、Python)写成的程序进行交互。
尽管 MATLAB 的设计初衷是数值计算,但其中的可选工具箱使用 MuPAD symbolic engine,具备符号计算能力。额外的包 Simulink 添加了图多领域模拟和针对动态和嵌入系统的基于模型的设计。
优点:
最快的数学和计算平台,尤其是向量化运算/线性矩阵代数。
适合所有数学和交易领域的商业级软件。
脚本简短,但高度集成了所有包。
拥有图和交互式图表的最佳可视化
具备良好测试和支持。
易于管理多线程支持和垃圾收集
最好的调试器
缺点:
无法执行,必须转换成另一种语言。
昂贵:每个 license 大约 1000 美元,每添加一个包需要额外支付 50+ 美元。
无法与其他语言很好地集成。
很难检测出交易系统中的偏差(它是为数学和工程模拟而构建的),因此可能需要广泛的测试。
糟糕的迭代循环性能。
无法开发单独的应用。
Octave
Octave 可以看作是商业语言 MATLAB 的 GNU 版本,它是一种脚本矩阵语言(scripting matrix language),其语法有大约 95% 可与 MATLAB 兼容。Octave 由工程师设计,因此预装了工程师常用的程序,其中很多时间序列分析程序、统计程序、文件命令和绘图命令与 MATLAB 语言相同。
优点:
首先,目前没有可用的鲁棒性 Octave 编译器,且没有必要有,因为该软件可以免费安装。
Octave 和 Matlab 的语言元素相同,除了一些个例,如嵌套函数。Octave 仍然处于积极开发的状态,每一个偏离 Matlab 语法之处都被视为 bug 或者至少是待解决问题。
Octave 有很多可用工具箱,只要程序不要求图输出,那么在不进行大量更改的前提下,使用 Octave 运行和使用 Matlab 运行差不多。
图方面的能力是 Matlab 的优势。Matlab 最新版本包括 GUI 设计器,包含大量很棒的可视化特征。
Octave 使用 GNU Plot 或 JHandles 作为图程序包,JHandles 与 Matlab 中的图程序包更接近一些。但是,Octave 不具备类似 GUI 设计器的组件,其可视化机制很受限且不与 Matlab 兼容。
集成开发环境也是类似的情况:Octave 有一个 QTOctave 项目,但仍处于早期阶段。
Octave 社区的合作很可能帮助该软件很快提供更好、更兼容的图以及 GUI 能力。
缺点:
它只是 MATLAB 的免费开源版本,无法带给用户新的东西。
下表列举了数据科学家和机器学习工程师的常用工具,读者可以查看这些工具的流行度。
原文链接:https://towardsdatascience.com/r-vs-python-vs-matlab-vs-octave-c28cd059aa69