视频 | Nature 新论文:机器人可以像动物一样进化了

2018 年 5 月 19 日 AI科技评论

机器人学习的过程就像是我们人类一样,反复练习,更新知识,不断试错,快速迭代,直到最后获得新的技能。

这里是,雷锋字幕组编译的 Two minutes paper 专栏,每周带大家用碎片时间阅览前沿技术,了解AI领域的最新研究成果。

原标题 This Robot Adapts Like Animals

翻译 | Binpluto    整理 | 凡江

《像动物一样适应的机器人(This Robot Adapts Like Animals )》论文提出一种智能试错法算法,算法允许机器人快速适应破坏,完全不需要自我诊断或是提前准备应急措施。


每周一篇2分钟论文解读视频

对于人类而言,有很多危险的工作,例如扑灭森林火灾,寻找地震废墟下的幸存者,或者是关闭福岛核电站等等。如果这些高危工作能让 AI 来完成,那该有多好!

本期介绍的论文中出现了两个机器人:一个六组机器人和一个机械手臂,以此来展示动作方面的智能试错算法。这是是一种快速有效的损坏恢复算法,可以使机器人更加高效和可靠地运行。

与传统强化学习(RL)方法相比,本期介绍的论文更加有效率,机器人上只需要花上几分钟和几次物理试验,而 RL 算法通常必须进行数百次测试才能学会如何完成任务。论文介绍了机器人有一个「模拟童年」(simulated childhood),在这里它学习了移动身体的不同方式,在经过几次测试和大约两分钟后就可以适应。



本期论文跟之前的研究有两个主要区别:

(1)机器人不需要知道损伤是什么,它只需要一种方法来衡量其性能;

(2)我们没有一个大型资料库来指导,遭受各种类型的损害之后应该怎么做。相反,我们的机器人可以像动物那样,自行学会应对各种损害的场景。

在这项研究中,机器人使用自己的模拟,找到成千上万种不同的行走方式。一旦损坏,机器人会进行体验并更新其关于每种可能行为的性能的知识(该更新将通过机器学习算法完成:高斯过程回归)。之前所习得的 13,000 种行为统统变得不管用了,因此,机器人必须利用之前的知识进行下一步操作的可行性测试:在大多数情况下,它会测试少于 10 种行为,以找到一个尽管受到损害仍能正常工作的行为。

论文原址: 

https://members.loria.fr/jbmouret/nature_press.html

对了,我们招人了,了解一下?

BAT资深算法工程师独家研发课程

最贴近生活与工作的好玩实操项目

班级管理助学搭配专业的助教答疑

学以致用拿offer,学完即推荐就业

扫码或点击阅读原文了解一下!

┏(^0^)┛欢迎分享,明天见!

登录查看更多
0

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
41+阅读 · 2020年3月9日
【斯坦福新课】CS234:强化学习,附课程PPT下载
专知会员服务
123+阅读 · 2020年1月15日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
26+阅读 · 2019年11月19日
使用强化学习训练机械臂完成人类任务
AI研习社
13+阅读 · 2019年3月23日
不对称多代理博弈中的博弈理论解读
AI前线
14+阅读 · 2018年3月8日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
8+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月5日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
41+阅读 · 2020年3月9日
【斯坦福新课】CS234:强化学习,附课程PPT下载
专知会员服务
123+阅读 · 2020年1月15日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
26+阅读 · 2019年11月19日
Top
微信扫码咨询专知VIP会员