【强化学习】AI最大缺陷是缺乏常识,无监督学习突破困境

2017 年 8 月 18 日 产业智能官 新智元

                    新智元                    

新智元                                                        

AI_era

智能+中国主平台,致力于推动中国从互联网+迈向智能+新纪元。重点关注人工智能、机器人等前沿领域发展,关注人机融合、人工智能和机器人革命对人类社会与文明进化的影响,领航中国新智能时代。

                                                                       



   新智元整理  



讲者:Yann LeCun

整理:熊笑


【新智元导读】近日,在台湾大学,卷积神经网络之父、FacebookAI 研究院院长 Yann LeCun 以「Deep Learning and the Path to AI」为题,对深度学习目前的发展现状和面临的最大挑战、以及应对方法进行了综述和分析。



6 月 29 日,台湾大学。卷积神经网络之父、FacebookAI 研究院院长 Yann LeCun 以「Deep Learning and the Path to AI」为题,对深度学习目前的发展现状和面临的最大挑战、以及应对方法进行了综述和分析。新智元结合台湾大学在 Facebook 上公布的视频、台湾科技媒体 iThome 的报道,以及 Yann LeCun 今年早些时候在爱丁堡大学的演讲资料,为您综合介绍。





深度学习的特点在于“整个程序都是可训练的”




演讲从模式识别(Pattern Recognition)的起源说起。1957年,Perceptron 诞生,成为第一个 LearningMachine。LeCun 说,目前的机器学习算法大多衍生自 Perceptron的概念。


从那时起,模式识别的标准模型就可以分为 3 步走:1.程序被输入一张图像,通过特征提取,将图像特征转换为多个向量;2. 输入这些向量到可训练的分类器中;3.程序输出识别结果。

 

他表示,机器学习算法其实就是误差校正(Error correction),通过调整权重,来进行特征提取。也就是说,如果输入一张图,算法识别后,结果值低于预期类别的值,工程师就将输入的图增加 Positive 的权重,减少 Negative 的权重,来校正误差。


深度学习是当今最广泛使用的模式识别方法。LeCun 认为深度学习的特点在于“整个程序都是可训练的”。他解释,构建深度学习的模型不是用手动调整特征提取的参数来训练分类器,而是建立一群像小型瀑布般的可训练的模组。

 

当开发人员将原始的影像输入系统后,会先经过初步的特征提取器,产生代表的数值,在这一个阶段可能会先识别出一些基本的纹理,接下来这些纹理的组合会再被拿来识别更具体的特征,像是物件的形体或是类别,整个训练的过程就是不断地经过一层又一层这样的模型,每一层都是可训练的,所以我们称这个算法为深度学习或是端到端训练(End to End Running)。


LeCun 解释,深度学习模型之所以工作良好,是因为现在的影像都是自然景象加上其他物体,也就是混合型的图像,而每个物体又由不同的特征所组成,会有不同的轮廓和纹路,图片的像素也是一个问题,因此,可以将影像分级成像素、边缘、轮廓、元件和物件等,初级的特征提取会先侦测出影像中最基本的轮廓,比如明显的纹路和色块,进一步的特征提取则是将上一层的结果组合再一起,拼成一个形体,最后再拼成一个物体。



这种分层式的组合架构(Hierarchical Compositionality)其实不只适用于影像,LeCun说明,它对文字、语音、动作或是任何自然的信号都适用,这种方式参考了人脑的运作模式。大脑中的视觉中枢,也是用类似分层式的组合架构来运行,当人类看到影像后,由视网膜进入到视丘后方外侧膝状体,再到大脑中主要的视觉中枢,最后来到颞叶皮质,人类看图像也是由大脑经过多层的结构,在100毫秒内就能识别图片。



深度学习的问题在于如何训练,在1980年代中期,误差反向传播算法(Back Propagation Algorithm)开始流行,但其实误差反向传播算法很早就被提出来,只是当时没有受到重视。误差反向传播算法一开始先经过简单线性分类,再将这些结果带到非线性的线性整流函数(Rectified Linear Unit,ReLU),线性整流函数就是找到要调整参数的方向,来减少错误判断,不过现在都已经有可用的套件或是框架,像是Torch、TensorFlow 或是 Theano等,还有一些套件是可用来计算输出结果和预期结果之间的误差。

 

Yann LeCun认为,现在要撰写机器学习算法并不难,用 3 行 Python 就可以完成,不过这还停留在监督式学习阶段,所谓的监督式学习就是输入大量的训练样本,每一套训练样本都已经经过人工标注出原始图片和对应的预期结果。以影像处理为例,训练集由多个(X,Y)参数组成,X就是影像的像素,Y则是预设的识别结果类别,像是车子、桌子等,之后再用大量的测试集来测试程序,若判断结果正确,不用调整,若判断有误则调整程序中的参数。





监督式机器学习存在二大问题




因此,Yann LeCun表示,监督式的机器学习就是功能优化(Function Optimization),资料输入和输出的关系通过可调整的参数来优化,经由调整参数的方式,将结果的错误率降至最低,其中,调整参数的方式有很多种,很多人都会用梯度下降算法(Stochastic Gradient Descent),梯度下降算法可以找到最适合的回归模型系数.即时地根据输入的资料动态调整模型。



身为「卷积神经网络之父」的 Yann LeCun 也介绍了卷积神经网络(Convolutional Neural Network,CNN),卷积网络就是将输入的影像像素矩阵经过一层过滤器,挑选出特征,再透过池化层(PoolingLayer),针对输入特征矩阵压缩,让特征矩阵变小,降低计算的复杂度。CNN影像和语音识别都有很好的成效,不仅如此,还能识别街上移动的路人、街景的物体,Facebook 也用 CNN 来识别 Facebook 用户上传的照片,他表示一天 Facebook 就有10亿以上的照片,可以準确地识别物体的类别,像是人还是狗、猫等,还能识别照片的主题,像是婚礼或是生日派对等。


不过,Yann LeCun提出,监督式的机器学习有2大问题,第一是要如何建立复杂的算法来解决复杂的问题,第二则是手动调整参数的知识和经验都是来自于不同任务,许多工程师想要处理的领域,像是影像识别、语音识别都需要建置不同模型,因此,监督式机器学习可以在训练过的专案上有很好的表现,但是没有训练过的资料,程序就无法辨别,简单来说,如果要程序识别椅子,不可能训练所有椅子的特征资料。

 

事实上,Yann LeCun 表示现实中有种机器具备数百万的调整钮(Knob),这些调整钮就像机器学习中的参数和 Perceptron 的权重一样,可以用上百万的训练样本来训练模型,最后分类出上千种的类别,但是,每一个特征的识别都必须经过数十亿次的操作,因此,可想而知,现今大家所使用的神经网络是非常复杂的,如此庞大的运作不可能在一般的 CPU 上执行,“我们面对的是非常大规模的优化问题。”他说。





AI系统的架构






AI系统的架构大致上可以分为感知(Perception)、触发器(Agent)和目标(Objective)3个模组,先由感知器侦测真实世界的数据,像是影像、语音等,这些数据经由触发器,会依据状态触发目标,执行相对应的程序并产生结果,其中触发器就是AI 的精髓,触发器必须要负责规划、预测等智能工作,而目标则是由本能和固定的两个元件所组成,以视觉识别(VisualIdentity)系统为例,经由感知收集影像数据,透过触发器触发分析情绪的程序,再判断影片中的人是开心还是不开心。


 

AI 架构中的触发器(Agent)主要负责预测和规划,运作过程又可分为模拟器(Simulator)、执行器(Actor)、回馈器(Critic),模拟器接收到状态后,传送给执行器,执行器就会启动相对应的动作,并同时对模拟器提出要求,启动相对应的动作之后送到回馈器,经由回馈器分析要採取的动作,决定后才送往目标(Objective)执行。





AI 最大局限是没有人类的“常识”





市场上 AI 好像无所不能,但其实,Yann LeCun个人认为,AI 还是有些局限,像是机器必须会观察状态、了解很多背景知识、世界运行的定律,以及精确地判断、规划等,其中,Yann LeCun 认为 AI 最大的局限是无法拥有人类的「常识」。


 

由于目前比较好的AI应用都是采用监督式学习,能够准确识别人工标示过的物体,也有些好的成果是用强化学习(Reinforcement Learning)的方式,但是强化学习需要大量地收集资料来训练模型,Yann LeCun表示,对应到现实社会中的问题,监督式学习不足以成为“真的”AI。

 

他指出,人类的学习是建立在与事物互动的过程,许多都是人类自行体会、领悟出对事物的理解,不需要每件事都要教导,举例来说,若有个物体被前面的物体挡住,人类会知道后面的物体依然存在的事实,或是物体没有另一个物体支撑就会掉落的事实。

 

“人脑就是推理引擎!”他说明,人类靠着观察建立内部分析模型,当人类遇到一件新的事物,就能用这些既有的模型来推测,因为生活中人类接触到大量的事物和知识,而建立了“常识”。这些常识可以带领人类做出一些程序无法达到的能力,像是人类可以只看一半的脸就能想像另外一半脸,或是可以从过去的事件推测未来等。

 

他举例,若人类看到一张战利品放不下行李箱的图片,再看到一个句子说:”这些战利品放不下行李箱,因为它太小了。“人类能够很清楚地知道“它”指的是行李箱,人类也因为知道整个社会和世界运行的规则,当没有太多的信息时,人类可以依照因果关系自动补足空白的信息。





无监督式学习是突破 AI 困境的关键,采用无监督学习的对抗训练让 AI 拥有真正自我学习的能力。




如何让 AI 拥有人类的常识?Yann LeCun认为要用无监督式学习。他又称之为预测学习,他将现今机器学习的方式分为强化式、监督式和无监督式学习,并以黑森林蛋糕来比喻。



强化学习是蛋糕上不可或缺的樱桃,所需要资料量可能大约只有几个Bits,监督式学习是蛋糕外部的糖衣,需要10到10,000个Bits的资料量,而无监督学习则是需要数百万个Bits,无监督学习被他比喻为黑森林蛋糕,因为无监督学习的预测能力像拥有黑魔法一样神奇,不过,他也强调黑森林蛋糕必须搭配樱桃,樱桃不是可选择的配料,而是必要的,意味着无监督学习与强化学习相辅相成,缺一不可。

 

Yann LeCun认为,程序还是很难在不确定性的情况下,正确地预测,举例来说,如果一只直立的笔,没有支撑之后,程序可以判断出笔会倒下,但是无法预测会倒向哪一个方向。


因此,他表示,对抗训练(Adversarial Training)是可以让 AI 程序拥有自学能力的方法,他解释,对抗训练就是让两个网络相互博奕,由生成器(Generator)和判别器(Discriminator)组成,生成器随机地从训练集中挑选真实数据和干扰噪音,产生新的训练样本,判别器再用与真实数据比对的方式,判断出数据的真实性,如此一来,生成器与判别器可以交互学习自动优化预测能力,创造最佳的预测模型。



视频链接:https://www.facebook.com/816762428486534/videos/826164667546310/?fallback=1

 



新一代技术+商业操作系统:

AI-CPS OS

     

新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利AI-CPS OS形成字化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生,在行业、企业和自身三个层面勇立鳌头。


数字化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置。

  • 分辨率革命种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品控制、事件控制和结果控制。

  • 复合不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  • 边界模糊化:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。随着变革范围不断扩大,一切都几乎变得不确定,即使是最精明的领导者也可能失去方向。面对新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能颠覆性的数字化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位。


如果不能在上述三个层面保持领先,领导力将会不断弱化并难以维继: 

  • 重新进行行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  • 重新构建你的企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  • 重新打造新的自己:你需要成为怎样的人?要重塑自己并在数字化时代保有领先地位,你必须如何去做?


子曰:“君子和而不同,小人同而不和。”  《论语·子路》

云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。

在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。

云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


人工智能通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。


新一代信息技术(云计算、大数据、物联网、区块链和人工智能)的商业化落地进度远不及技术其本身的革新来得迅猛,究其原因,技术供应商(乙方)不明确自己的技术可服务于谁,传统企业机构(甲方)不懂如何有效利用新一代信息技术创新商业模式和提升效率。


“产业智能官”,通过甲、乙方价值巨大的云计算、大数据、物联网、区块链和人工智能的论文、研究报告和商业合作项目,面向企业CEO、CDO、CTO和CIO,服务新一代信息技术输出者和新一代信息技术消费者。


助力新一代信息技术公司寻找最有价值的潜在传统客户与商业化落地路径,帮助传统企业选择与开发适合自己的新一代信息技术产品和技术方案,消除新一代信息技术公司与传统企业之间的信息不对称,推动云计算、大数据、物联网、区块链和人工智能的商业化浪潮。


给决策制定者和商业领袖的建议:


  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发人工智能型企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。

重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。

新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能正在经历从“概念”到“落地”,最终实现“大范围规模化应用,深刻改变人类生活”的过程。





产业智能官  AI-CPS



新一代技术+商业操作系统(AI-CPS OS:云计算+大数据+物联网+区块链+人工智能),在场景中状态感知-实时分析-自主决策-精准执行-学习提升认知计算机器智能实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链




长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能驾驶”、“智能金融”、“智能城市”、“智能零售新模式:案例分析”、“研究报告”、“商业模式”、“供应链金融”、“财富空间”






本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com





登录查看更多
3

相关内容

杨立昆(法语:Yann Le Cun,英语:Yann LeCun,1960年7月8日-)(原中文译名:扬·勒丘恩)是一位计算机科学家,他在机器学习、计算机视觉、移动机器人和计算神经科学等领域都有很多贡献。他最著名的工作是在光学字符识别和计算机视觉上使用卷积神经网络 (CNN),他也被称为卷积网络之父。他同Léon Bottou和Patrick Haffner等人一起创建了DjVu图像压缩技术。他同Léon Bottou一起开发了Lush语言。
【牛津大学&DeepMind】自监督学习教程,141页ppt
专知会员服务
178+阅读 · 2020年5月29日
华为发布《自动驾驶网络解决方案白皮书》
专知会员服务
125+阅读 · 2020年5月22日
基于深度神经网络的少样本学习综述
专知会员服务
169+阅读 · 2020年4月22日
《强化学习》简介小册,24页pdf
专知会员服务
271+阅读 · 2020年4月19日
强化学习的未来——第一部分
AI研习社
9+阅读 · 2019年1月2日
论强化学习的根本缺陷
AI科技评论
11+阅读 · 2018年7月24日
干货|浅谈强化学习的方法及学习路线
机器学习算法与Python学习
16+阅读 · 2018年3月28日
独家 | 一文读懂人工神经网络
数据派THU
12+阅读 · 2018年2月1日
【GAN】生成式对抗网络GAN的研究进展与展望
产业智能官
12+阅读 · 2017年8月31日
技术 | 强化学习入门以及代码实现
AI100
51+阅读 · 2017年8月26日
卷积神经网络(CNN)学习笔记1:基础入门
黑龙江大学自然语言处理实验室
14+阅读 · 2016年6月16日
Anomalous Instance Detection in Deep Learning: A Survey
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
强化学习的未来——第一部分
AI研习社
9+阅读 · 2019年1月2日
论强化学习的根本缺陷
AI科技评论
11+阅读 · 2018年7月24日
干货|浅谈强化学习的方法及学习路线
机器学习算法与Python学习
16+阅读 · 2018年3月28日
独家 | 一文读懂人工神经网络
数据派THU
12+阅读 · 2018年2月1日
【GAN】生成式对抗网络GAN的研究进展与展望
产业智能官
12+阅读 · 2017年8月31日
技术 | 强化学习入门以及代码实现
AI100
51+阅读 · 2017年8月26日
卷积神经网络(CNN)学习笔记1:基础入门
黑龙江大学自然语言处理实验室
14+阅读 · 2016年6月16日
Top
微信扫码咨询专知VIP会员