【强化学习干货】《深度学习与机器人学》大牛Pieter Abbeel 105页PPT下载

2019 年 1 月 2 日 新智元




  新智元报道  

作者:Pieter Abbeel

编辑:肖琴

【新智元导读】2019年开启之际,美国加州大学伯克利分校教授、机器人与强化学习领域专家 Pieter Abbeel 发布了一份资源大礼:《深度学习与机器人学》105页PPT。这份PPT整理自Abbeel教授2018年受邀参加的69个演讲,内容涵盖监督学习、强化学习和无监督学习的重要进展,以及深度学习的主要应用等方面,有助于读者对深度学习和机器人学有一个宏观的理解。


Pieter Abbeel教授从AI近年的一些“热论”讲起,从马斯克认为AI是人类文明面临的最大威胁、普京说“谁能成为 AI 领域的领袖,谁就将成为世界的主宰者”,概述了近年来AI的热潮:NIPS等顶会的参会人数达到史上最高、arxiv上AI领域的论文翻倍增长。


报告的主体部分是“深度学习成功”,详细介绍了监督学习、强化学习和无监督学习的重要进展。Pieter Abbeel教授对这三个概念的解释如下:

  • 监督学习:模式识别,如果有足够多的数据(input -> output pairs),那么神经网络就能够学习模式;

  • 强化学习:通过试错的过程,学习目标导向的行为

  • 无监督学习:没有明确的监督的条件下,学习世界的结构


最后,报告展示了深度学习的一系列应用。


PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0


Pieter Abbeel教授简介



Pieter Abbeel,加州大学伯克利分校教授、机器人学习实验室主任,伯克利人工智能研究(BAIR)实验室联合主任。


Pieter Abbeel是机器人和强化学习领域的大牛。Pieter Abbeel 2008年从斯坦福大学获得博士学位,师从百度前首席科学家 Andrew Ng(吴恩达),毕业后在UC Berkeley任教。


2016~2017年,Pieter Abbeel加入Open AI,任研究科学家。现在则是Open AI顾问。


Pieter Abbeel还是两家AI公司的创始人,Gradescope和covariant.ai。Gradescope开发为家庭作业、课题研究、试卷等打分的AI系统;covariant.ai开发机器人自动化的AI系统,在制造/仓储/电子商务/物流等领域应用。


Pieter Abbeel 的研究重点特别集中于如何让机器人向人类学习(学徒学习),如何让机器人通过自己的试错过程学习(强化学习),以及如何通过从learning-to-learn(元学习)过程中加快技能获取。他开发的机器人已经学会了先进的直升机特技飞行、打结、基本装配、叠衣服、移动、以及基于视觉的机器人操作。


机器人叠毛巾


Pieter Abbeel目前的主要研究方向:机器人和机器学习,特别关注深度强化学习、深度模仿学习、深度无监督学习、元学习、learning-to-learn、以及AI安全。


PPT全文



PPT下载地址:

https://www.dropbox.com/s/dw4kmxkrv3orujd/2018_12_xx_Abbeel--AI.pdf?dl=0


【加入社群】


新智元AI技术+产业社群招募中,欢迎对AI技术+产业落地感兴趣的同学,加小助手微信号:aiera2015_2   入群;通过审核后我们将邀请进群,加入社群后务必修改群备注(姓名 - 公司 - 职位;专业群审核较严,敬请谅解)。


登录查看更多
13

相关内容

Pieter Abbeel是加州大学伯克利分校电子工程和计算机科学教授,伯克利机器人学习实验室主任和伯克利AI研究实验室联合主任。
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
UC伯克利Pieter Abbeel谈论强化学习-视频
专知
7+阅读 · 2018年12月17日
下载 | 193页无监督深度学习PPT教程
机器学习算法与Python学习
8+阅读 · 2018年12月5日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
26+阅读 · 2019年3月5日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
Top
微信扫码咨询专知VIP会员