目前,任何公开使用的技术都要经过审计机制,在这一机制中,我们旨在理解使用该技术的影响和局限性,以及它们为何会产生。由于机器学习(ML)正逐渐成为我们这个时代的普遍技术,并且ML系统引发的偏见议题正在引起关注,因此理解如何审计ML系统是一个真正的关注点。
在本教程中,我们将讨论算法的发展和现有的软件,以解答以下问题:
如何选择一个与应用相容的公平性度量来量化遇到的偏见? 如何准确且高效地量化ML系统预测中遇到的偏见? 如何解释导致不同粒度级别的偏见的不同来源?