深度学习:全面指南提供了深度学习(DL)和机器学习(ML)的概念的全面覆盖。DL和ML是最受欢迎的领域,需要深刻的理解。这本书使读者能够基于ML和DL构建创新和有用的应用。从神经网络的基础开始,并继续通过各种类型的CNN, RNNs, LSTM的架构,以及更多,直到书的结尾,每一个主题都给予了最大的照顾和专业和全面的塑造。

https://www.routledge.com/Deep-Learning-A-Comprehensive-Guide/Vasudevan-Pulari-Vasudevan/p/book/9781032028828

关键特征: 包括从ML概念到DL概念的平稳过渡

对于所有基于代码的示例,都提供了逐行解释

包括许多实际的例子和面试问题

即使是非计算机科学背景的人也可以从这本书中受益,学习理论、例子、案例研究和代码片段

每一章都以目标开始,并以一组测试读者理解力的测试问题结束

包括对提供额外指导的相关YouTube视频的引用

人工智能是每个人的领域。这本书面向所有人,不论他们的专业领域是什么。毕业生和研究人员在深度学习将发现这本书有用。

成为VIP会员查看完整内容
0
50

相关内容

这本书通过探索计算机科学理论和机器学习双方可以相互传授的内容,将理论和机器学习联系起来。它强调了对灵活、易于操作的模型的需求,这些模型更好地捕捉使机器学习变得容易的东西,而不是让机器学习变得困难的东西。

理论计算机科学家将被介绍到机器学习的重要模型和该领域的主要问题。机器学习研究人员将以一种可访问的格式介绍前沿研究,并熟悉现代算法工具包,包括矩法、张量分解和凸规划松弛。

超越最坏情况分析的处理方法是建立对实践中使用的方法的严格理解,并促进发现令人兴奋的、解决长期存在的重要问题的新方法。

在这本书中,我们将涵盖以下主题:

(a)非负矩阵分解

(b)主题建模

(c)张量分解

(d)稀疏恢复

(e)稀疏编码

(f)学习混合模型

(g)矩阵补全

https://www.cambridge.org/core/books/algorithmic-aspects-of-machine-learning/165FD1899783C6D7162235AE405685DB

成为VIP会员查看完整内容
0
58

这本书提供了使“机器学习”系统更可解释的最新概念和可用的技术的全面介绍。本文提出的方法几乎可以应用于所有当前的“机器学习”模型: 线性和逻辑回归、深度学习神经网络、自然语言处理和图像识别等。

机器学习(Machine Learning)的进展正在增加使用人工代理来执行以前由人类处理的关键任务(医疗、法律和金融等)。虽然指导这些代理设计的原则是可以理解的,但目前大多数深度学习模型对人类的理解是“不透明的”。《Python可解释人工智能》通过从理论和实践的角度,填补了目前关于这一新兴主题的文献空白,使读者能够快速使用可解释人工智能的工具和代码。

本书以可解释AI (XAI)是什么以及为什么在该领域需要它为例开始,详细介绍了根据特定背景和需要使用XAI的不同方法。然后介绍利用Python的具体示例对可解释模型的实际操作,展示如何解释内在的可解释模型以及如何产生“人类可理解的”解释。XAI的模型不可知方法可以在不依赖于“不透明”的ML模型内部的情况下产生解释。使用计算机视觉的例子,作者然后着眼于可解释的模型的深度学习和未来的展望方法。从实践的角度,作者演示了如何在科学中有效地使用ML和XAI。最后一章解释了对抗性机器学习以及如何使用对抗性例子来做XAI。

https://www.springer.com/gp/book/9783030686390

成为VIP会员查看完整内容
1
99

PyTorch非常容易学习,并提供了一些高级特性,比如支持多处理器,以及分布式和并行计算。PyTorch有一个预训练模型库,为图像分类提供开箱即用的解决方案。PyTorch提供了进入尖端深度学习的最易访问的切入点之一。它与Python编程语言紧密集成,因此对于Python程序员来说,编写它似乎是自然和直观的。独特的、动态的处理计算图的方法意味着PyTorch既高效又灵活。

本书是为那些想要使用PyTorch进行深度学习的人而写的。目的是通过直接实验让您了解深度学习模型。这本书非常适合那些熟悉Python,了解一些机器学习基础知识,并正在寻找一种方法来有效地发展他们的技能的人。这本书将集中在最重要的特征和给出实际的例子。它假设您有Python的工作知识,并熟悉相关的数学思想,包括线性代数和微分。这本书提供了足够的理论,让你开始和运行,不需要严格的数学理解。在本书结束时,您将有一个深度学习系统的实用知识,并能够应用PyTorch模型来解决您关心的问题。

成为VIP会员查看完整内容
0
107

PyTorch是Facebook于2017年初在机器学习和科学计算工具Torch的基础上,针对Python语言发布的一个全新的机器学习工具包,一经推出便受到了业界的广泛关注和讨论,目前已经成为机器学习从业人员的研发工具。

《PyTorch深度学习》是使用PyTorch构建神经网络模型的实用指南,内容分为9章,包括PyTorch与深度学习的基础知识、神经网络的构成、神经网络的知识、机器学习基础知识、深度学习在电脑视觉中的应用、深度学习在序列数据和文本中的应用、生成网络、现代网络架构,以及PyTorch与深度学习的未来走向。

《PyTorch深度学习》适合对深度学习领域感兴趣且希望一探PyTorch的业内人员阅读;具备其他深度学习框架使用经验的读者,也可以通过本书掌握PyTorch的用法。

Vishnu Subramanian在领导、设计和实施大数据分析项目(人工智能、机器学习和深度学习)方面富有经验。

擅长机器学习、深度学习、分布式机器学习和可视化等。 在零售、金融和旅行等行业颇具经验,还善于理解和协调企业、人工智能和工程团队之间的关系。

成为VIP会员查看完整内容
0
135

学习使用Python分析数据和预测结果的更简单和更有效的方法

Python机器学习教程展示了通过关注两个核心机器学习算法家族来成功分析数据,本书能够提供工作机制的完整描述,以及使用特定的、可破解的代码来说明机制的示例。算法用简单的术语解释,没有复杂的数学,并使用Python应用,指导算法选择,数据准备,并在实践中使用训练过的模型。您将学习一套核心的Python编程技术,各种构建预测模型的方法,以及如何测量每个模型的性能,以确保使用正确的模型。关于线性回归和集成方法的章节深入研究了每种算法,你可以使用书中的示例代码来开发你自己的数据分析解决方案。

机器学习算法是数据分析和可视化的核心。在过去,这些方法需要深厚的数学和统计学背景,通常需要结合专门的R编程语言。这本书演示了机器学习可以如何实现使用更广泛的使用和可访问的Python编程语言。

使用线性和集成算法族预测结果

建立可以解决一系列简单和复杂问题的预测模型

使用Python应用核心机器学习算法

直接使用示例代码构建自定义解决方案

机器学习不需要复杂和高度专业化。Python使用了更简单、有效和经过良好测试的方法,使这项技术更容易为更广泛的受众所接受。Python中的机器学习将向您展示如何做到这一点,而不需要广泛的数学或统计背景。

成为VIP会员查看完整内容
0
147

获得金融、医疗保健和零售领域的机器学习实用技能。这本书通过提供这些领域的案例研究,使用了动手的方法:你将看到如何使用机器学习作为商业增强工具的例子。作为一名领域专家,您不仅会发现机器学习在金融、医疗保健和零售领域是如何应用的,而且还会通过实施机器学习的实际案例研究进行工作。

使用Python的机器学习应用程序分为三个部分,分别针对每个领域(医疗保健、金融和零售)。每一节都以机器学习和该领域的关键技术进展的概述开始。然后,您将通过案例研究了解更多关于组织如何改变其所选择市场的游戏规则。这本书有实际的案例研究与Python代码和领域特定的创新想法赚钱的机器学习。

你会学到什么

  • 发现应用的机器学习过程和原理
  • 在医疗保健、金融和零售领域实现机器学习
  • 避免应用机器学习的陷阱
  • 在三个主题领域构建Python机器学习示例

这本书是给谁的

  • 数据科学家和机器学习专家。
成为VIP会员查看完整内容
0
92

机器学习简明指南,不可错过!

A Machine Learning Primer

亚马逊研究科学家Mihail Eric关于机器学习实践重要经验。包括监督学习、机器学习实践、无监督学习以及深度学习。具体为:

监督学习

  • 线性回归
  • 逻辑回归
  • 朴素贝叶斯
  • 支持向量机
  • 决策树
  • K-近邻

机器学习实践

  • 偏差-方差权衡
  • 如何选择模型
  • 如何选择特征
  • 正则化你的模型
  • 模型集成
  • 评价指标

无监督学习

  • 市场篮子分析
  • K均值聚类
  • 主成分分析

深度学习

  • 前向神经网络
  • 神经网络实践
  • 卷积神经网络
  • 循环神经网络
成为VIP会员查看完整内容
0
65

本文采用了一种独特的机器学习方法,它包含了对进行研究、开发产品、修补和玩耍所必需的所有基本概念的全新的、直观的、但又严谨的描述。通过优先考虑几何直观,算法思维,和实际应用的学科,包括计算机视觉,自然语言处理,经济学,神经科学,推荐系统,物理,和生物学,这篇文章为读者提供了一个清晰的理解基础材料以及实际工具需要解决现实世界的问题。通过深入的Python和基于MATLAB/ octave的计算练习,以及对前沿数值优化技术的完整处理,这是学生的基本资源,也是从事机器学习、计算机科学、电子工程、信号处理和数值优化的研究人员和实践者的理想参考。其他资源包括补充讨论主题、代码演示和练习,可以在官方教材网站mlrefined.com上找到。

  • 建立在清晰的几何直觉上的讲述
  • 最先进的数值优化技术的独特处理
  • 逻辑回归和支持向量机的融合介绍
  • 将功能设计和学习作为主要主题
  • 通过函数逼近的视角,先进主题的无与伦比的呈现
  • 深度神经网络和核方法的细化描述
成为VIP会员查看完整内容
0
135

书名: Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要内容:

这本书分为两个部分。

第一部分,机器学习的基础知识,涵盖以下主题:

  • 什么是机器学习?它被试图用来解决什么问题?机器学习系统的主要类别和基本概念是什么?
  • 典型的机器学习项目中的主要步骤。
  • 通过拟合数据来学习模型。
  • 优化成本函数(cost function)。
  • 零、前言
  • 处理,清洗和准备数据。
  • 选择和设计特征。
  • 使用交叉验证选择一个模型并调整超参数。
  • 机器学习的主要挑战,特别是欠拟合和过拟合(偏差和方差权衡)。
  • 对训练数据进行降维以对抗 the curse of dimensionality(维度诅咒)
  • 最常见的学习算法:线性和多项式回归, Logistic 回归,k-最近邻,支持向量机,决策 树,随机森林和集成方法。

第二部分,神经网络和深度学习,包括以下主题:

  • 什么是神经网络?它们有啥优势?
  • 使用 TensorFlow 构建和训练神经网络。
  • 最重要的神经网络架构:前馈神经网络,卷积网络,递归网络,长期短期记忆网络 (LSTM)和自动编码器。
  • 训练深度神经网络的技巧。
  • 对于大数据集缩放神经网络。
  • 强化学习。

第一部分主要基于 scikit-learn ,而第二部分则使用 TensorFlow 。 注意:不要太急于深入学习到核心知识:深度学习无疑是机器学习中最令人兴奋的领域之 一,但是你应该首先掌握基础知识。而且,大多数问题可以用较简单的技术很好地解决(而 不需要深度学习),比如随机森林和集成方法(我们会在第一部分进行讨论)。如果你拥有 足够的数据,计算能力和耐心,深度学习是最适合复杂的问题的,如图像识别,语音识别或 自然语言处理。

成为VIP会员查看完整内容
Hands on Machine Learning with Scikit Learn and TensorFlow - 中文版.pdf
0
92
小贴士
相关主题
相关VIP内容
专知会员服务
58+阅读 · 2021年10月18日
专知会员服务
135+阅读 · 2021年4月3日
专知会员服务
147+阅读 · 2021年2月25日
专知会员服务
92+阅读 · 2021年1月1日
专知会员服务
65+阅读 · 2020年10月5日
【干货书】《机器学习导论(第二版)》,348页pdf
专知会员服务
166+阅读 · 2020年6月16日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
92+阅读 · 2020年3月15日
相关论文
Quantum Ensemble for Classification
Antonio Macaluso,Luca Clissa,Stefano Lodi,Claudio Sartori
0+阅读 · 1月18日
Jiahao Li,Bin Li,Yan Lu
4+阅读 · 2021年9月30日
Daniel A. Roberts,Sho Yaida,Boris Hanin
23+阅读 · 2021年6月18日
Ye Zheng,Jiahong Wu,Yongqiang Qin,Faen Zhang,Li Cui
6+阅读 · 2021年6月1日
Eugene A. Golikov
6+阅读 · 2020年12月10日
Few-shot Learning: A Survey
Yaqing Wang,Quanming Yao
334+阅读 · 2019年4月10日
Yanzhao Zhou,Yi Zhu,Qixiang Ye,Qiang Qiu,Jianbin Jiao
3+阅读 · 2018年4月3日
Yuan-Ting Hu,Jia-Bin Huang,Alexander G. Schwing
5+阅读 · 2018年3月29日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
6+阅读 · 2018年3月23日
Lei Zhang,Shuai Wang,Bing Liu
25+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员