大型语言模型(LLMs)对于机器学习应用变得越来越重要。然而,使LLMs与我们的意图保持一致可能是具有挑战性的,特别是当我们想要生成优先于其他内容的内容,或者当我们希望LLM以某种难以描述的风格或语调响应时。为了应对这一挑战,我们提出了一种使用对比例子来更好描述我们意图的方法。这涉及提供展示真实意图的正面例子,以及展示我们希望LLMs避免的特征的负面例子。负面例子可以从标记数据中检索,由人类编写,或由LLM本身生成。在生成答案之前,我们要求模型分析这些例子,以教会自己需要避免什么。这一推理步骤为模型提供了用户需求的适当阐述,并引导它生成更好的答案。我们在合成和真实世界数据集上测试了我们的方法,包括StackExchange和Reddit,发现与标准的少次数提示相比,它显著提高了性能。

成为VIP会员查看完整内容
25

相关内容

【CVPR2024】非自回归序列到序列的视觉-语言模型
【KDD2023】协同过滤的高效联合超参数和架构搜索
专知会员服务
22+阅读 · 2023年7月23日
【ICML2023】基于最优多任务插值的多模态基础模型迁移
专知会员服务
30+阅读 · 2023年4月29日
【ICML2023】基于自然语言指令的受控文本生成
专知会员服务
28+阅读 · 2023年4月28日
专知会员服务
21+阅读 · 2021年10月8日
专知会员服务
18+阅读 · 2021年9月23日
专知会员服务
14+阅读 · 2021年6月26日
专知会员服务
25+阅读 · 2021年5月23日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
13+阅读 · 2021年2月25日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
15+阅读 · 2020年8月21日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
如何使用自然语言工具包(NLTK)在Python3中执行情感分析
Python程序员
19+阅读 · 2019年10月28日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
Arxiv
157+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
Arxiv
66+阅读 · 2023年3月26日
Arxiv
139+阅读 · 2023年3月24日
Arxiv
20+阅读 · 2023年3月17日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【CVPR2024】非自回归序列到序列的视觉-语言模型
【KDD2023】协同过滤的高效联合超参数和架构搜索
专知会员服务
22+阅读 · 2023年7月23日
【ICML2023】基于最优多任务插值的多模态基础模型迁移
专知会员服务
30+阅读 · 2023年4月29日
【ICML2023】基于自然语言指令的受控文本生成
专知会员服务
28+阅读 · 2023年4月28日
专知会员服务
21+阅读 · 2021年10月8日
专知会员服务
18+阅读 · 2021年9月23日
专知会员服务
14+阅读 · 2021年6月26日
专知会员服务
25+阅读 · 2021年5月23日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
13+阅读 · 2021年2月25日
【ACMMM2020】零样本语义分割的上下文感知特征生成
专知会员服务
15+阅读 · 2020年8月21日
相关基金
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
9+阅读 · 2014年12月31日
相关论文
Arxiv
157+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
398+阅读 · 2023年3月31日
Arxiv
66+阅读 · 2023年3月26日
Arxiv
139+阅读 · 2023年3月24日
Arxiv
20+阅读 · 2023年3月17日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
微信扫码咨询专知VIP会员