可解释机器学习模型与架构
这本前沿新作涵盖了硬件架构实现、软件实现方法,以及机器学习应用的高效硬件。 机器学习和深度学习模块现在已经成为许多智能和自动化系统的不可或缺的一部分,在这些系统中,信号处理在不同层面上进行。文本、图像或视频形式的信号处理需要在期望的数据速率和准确性下进行大规模数据计算操作。大数据需要更多地使用集成电路(IC)面积,其中嵌入了大量的存储器,这进一步导致了更多的IC面积。电力消耗、延迟和IC面积之间的权衡始终是设计师和研究人员关注的问题。需要新的硬件架构和加速器来探索和实验高效的机器学习模型。许多实时应用,如医疗保健中生物医学数据的处理、智能交通、卫星图像分析和物联网(IoT)启用的系统,在准确性、速度、计算能力和整体电力消耗方面有很大的改进空间。 本书处理的是支持高速处理器的高效机器和深度学习模型,这些处理器具有可重配置架构,如图形处理单元(GPU)和现场可编程门阵列(FPGA),或任何混合系统。无论是在领域或实验室里工作的经验丰富的工程师或科学家,还是学生或学者,这都是任何图书馆必备的。 封底介绍 同前。
关于作者 Suman Lata Tripathi博士是Lovely Professional University的一名教授,拥有超过21年的学术经验。她在审稿期刊和会议上发表了超过103篇研究论文。她组织了几个研讨会、暑期实习和专家讲座供学生参加,并担任了IEEE期刊和会议的分会主席、会议指导委员会成员、编辑委员会成员和审稿人。她已经出版了三本书,并目前有多卷即将由Wiley-Scrivener出版。 Mufti Mahmud博士是英国诺丁汉特伦特大学计算机科学系认知计算副教授。他是NTU研究优秀框架计算机科学与信息学评估单元的协调人,以及交互系统研究小组和认知计算与大脑信息学研究小组的副组长。他还是计算和信息科学研究中心以及医疗技术创新设施的活跃成员。他是众多学会和研究委员会的成员。