在过去的几十年里,需要设计的系统的复杂性以惊人的速度增长。在一个单独的设计团队看来,可能是一个系统,但几乎肯定是一个更大的系统中的一个组成部分。
单独的、可授权的半导体IP块,如处理器、外围设备和总线,被集成到可授权的子系统中。反过来,这些成为芯片上系统(SoC)的组件,其小型化符合摩尔定律,生产率的提高使设计成本通过电子设计自动化(EDA)行业的工具和重复使用而得以承受。SoC反过来成为产品中印刷电路板(PCB)上的部件,被集成到F-35战斗机等系统中。虽然F-35战斗机可以说是地球上最复杂的机器,使用3500个集成电路(IC)和200个独特的芯片,集成了来自1600个供应商的20万个零件,拥有超过2000万行的软件代码,但F-35战斗机只是空中交通和通信网络这个更大系统中的 "一个组件"。
系统仿真有可能通过设计的首次成功来提高生产前的质量,允许压缩串行开发管道,加快验证运行时间,并允许更容易和更早地分发用于软件开发的平台,更不用说在测试期间提高安全性,因为在模拟器中的崩溃要比把真实的生命置于危险之中好得多。系统仿真也与业界所说的数字孪生有很大的重叠,数字孪生是系统的虚拟代表,可以对其施加相同的刺激。
本文分析了电子设备和系统的系统仿真的挑战。利用来自商业SoC领域的实际用户例子,我们将概述在设计流程的早期使用虚拟和物理仿真来仿真各种范围和抽象水平的系统的好处。