论文题目:Data Poisoning Attack against Recommender System Using Incomplete and Perturbed Data
作者:Hengtong Zhang, 田长鑫, Yaliang Li, Lu Su, Jing Gao, Nan Yang, 赵鑫
论文概述:最近的研究表明,推荐系统由于其开放性,它们很容易受到数据投毒攻击。在数据投毒攻击中,攻击者通常会通过一组受控制的用户将精心设计的用户-项目交互数据注入推荐模型的训练集,以便根据需要修改模型参数。因此,现有的攻击方法通常需要完全访问训练数据,从而推断物品的特征,并为受控制的用户制造虚假交互。但是,由于攻击者数据收集能力的有限和推荐服务方隐私保护机制的干扰,攻击者无法实现对训练数据的完全访问,这导致这种攻击方法在实践中可能并不可行。在本文中,我们提出了两种新的对抗攻击方法来处理训练数据的不完整性和扰动。首先,我们提出了一个双层优化框架,结合概率生成模型来寻找训练数据中未被显著干扰的用户-物品交互,并利用这些交互数据来制造虚假的用户-物品交互。此外,我们逆转了推荐模型的学习过程,并在此基础上开发了一种简单而有效的方法,该方法可以结合上下文特定的启发式规则来处理数据的不完整性和扰动。我们在两个数据集上对三种典型推荐模型进行了大量实验,实验结果表明,所提出的方法比现有方法具有更好的攻击性能。