【导读】国际人工智能会议AAAI 2022论文将在全程线上举办,时间在 2 月 22 日-3 月 1 日,本届大会也将是第 36 届 AAAI 大会。大会涵盖了众多最近研究Tutorial报告,来自UIC, Adobe等学者共同做了关于关系数据因果推理的进展报告,非常值得关注!
因果推理的任务——从数据中推断干预措施和反事实的效果——是大量科学和工业应用的核心。为了捕获真实世界数据中的噪声、异构性和复杂关系,习惯上将数据源建模为关系系统,并对它们进行概率推理。数据关系可以通过异构网络表示,其中节点表示相互依赖的实体,如人、公司、网站和疾病,而边缘表示这些实体之间的不同关系,如友谊、超链接、贡献和疾病传播。本教程将介绍网络数据因果推理的最新研究成果,也称为干扰因果推理。我们将以现实世界的应用来激发这一领域的研究,例如测量社交网络和市场实验的影响力。我们将讨论将为独立和同分布(IID)数据设计的现有因果推理技术应用到关系数据的挑战、当前存在的一些解决方案以及未来研究的差距和机遇。我们将介绍现有的网络实验设计,以测量兴趣的不同可能影响。然后,我们将集中于因果推断从观察数据,其表示,识别,和估计。我们将以网络中因果发现的研究作为总结。