To enable safe and reliable decision-making, autonomous vehicles (AVs) feed sensor data to perception algorithms to understand the environment. Sensor fusion, and particularly semantic fusion, with multi-frame tracking is becoming increasingly popular for detecting 3D objects. Recently, it was shown that LiDAR-based perception built on deep neural networks is vulnerable to LiDAR spoofing attacks. Thus, in this work, we perform the first analysis of camera-LiDAR fusion under spoofing attacks and the first security analysis of semantic fusion in any AV context. We find first that fusion is more successful than existing defenses at guarding against naive spoofing. However, we then define the frustum attack as a new class of attacks on AVs and find that semantic camera-LiDAR fusion exhibits widespread vulnerability to frustum attacks with between 70% and 90% success against target models. Importantly, the attacker needs less than 20 random spoof points on average for successful attacks - an order of magnitude less than established maximum capability. Finally, we are the first to analyze the longitudinal impact of perception attacks by showing the impact of multi-frame attacks.


翻译:为使安全可靠的决策,自主飞行器(AVs)将感官数据用于感知算法,以便理解环境。感官聚合,特别是语义融合,多框架跟踪正在日益普及,以探测3D天体。最近,人们发现,在深神经网络上建立的基于LiDAR的感知,很容易受到LiDAR的潜伏攻击。因此,在这项工作中,我们首次分析摄像机-LiDAR的感知,在任何AV情况下,对语义融合进行感知算法分析。我们首先发现,聚合比现有的防天真粪便防御系统更成功。然而,我们随后将骨骼攻击定义为对AVs的新一类攻击,发现语义相机-LiDAR的感知觉觉觉觉觉觉觉发现,相对于目标模型而言,70%至90%的成功率,血脉冲攻击具有广泛的易感力。重要的是,攻击者需要平均不到20个随机脉冲点,以至低于确定的最大能力。我们首先分析多角度攻击的影响。

0
下载
关闭预览

相关内容

LESS 是一个开源的样式语言,受到 Sass 的影响。严格来说,LESS 是一个嵌套的元语言,符合语法规范的 CSS 语句也是符合规范的 Less 代码。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月4日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员