We present a novel approach which aims at high-performance uncertainty quantification for cardiac electrophysiology simulations. Employing the monodomain equation to model the transmembrane potential inside the cardiac cells, we evaluate the effect of spatially correlated perturbations of the heart fibers on the statistics of the resulting quantities of interest. Our methodology relies on a close integration of multilevel quadrature methods, parallel iterative solvers and space-time finite element discretizations, allowing for a fully parallelized framework in space, time and stochastics. Extensive numerical studies are presented to evaluate convergence rates and to compare the performance of classical Monte Carlo methods such as standard Monte Carlo (MC) and quasi-Monte Carlo (QMC), as well as multilevel strategies, i.e. multilevel Monte Carlo (MLMC) and multilevel quasi-Monte Carlo (MLQMC) on hierarchies of nested meshes. Finally, we employ a recently suggested variant of the multilevel approach for non-nested meshes to deal with a realistic heart geometry.
翻译:我们提出了一个新颖的方法,旨在为心脏电生理模拟进行高性能不确定性量化。我们利用单面方程式来模拟心脏细胞内部的转基因潜力,我们评估心脏纤维在空间上相关扰动对所产生兴趣数量统计的影响。我们的方法依赖于将多层次的二次方位方法、平行迭代解答器和时空有限元素分解密切结合,从而在空间、时间和随机学方面建立一个完全平行的框架。我们提出了广泛的数字研究,以评价汇合率,比较典型的蒙特卡洛方法(MC)和准蒙特卡洛(QMC)的性能,以及多层次战略,即多层次的蒙特卡洛(MLMC)和多层次的准蒙特卡洛(MLQMC)对嵌巢形草的等级结构。最后,我们采用了最近提出的多层次方法的变式,用于非内心形的模材处理现实的心脏几何学。