In many practical parameter estimation problems, such as coefficient estimation of polynomial regression, the true model is unknown and thus, a model selection step is performed prior to estimation. The data-based model selection step affects the subsequent estimation. In particular, the oracle Cram\'er-Rao bound (CRB), which is based on knowledge of the true model, is inappropriate for post-model-selection performance analysis and system design outside the asymptotic region. In this paper, we investigate post-model-selection parameter estimation of a vector with an unknown support set, where this support set represents the model. We analyze the estimation performance of coherent estimators that force unselected parameters to zero. We use the mean-squared-selected-error (MSSE) criterion and introduce the concept of selective unbiasedness in the sense of Lehmann unbiasedness. We derive a non-Bayesian Cram\'er-Raotype bound on the MSSE and on the mean-squared-error (MSE) of any coherent estimator with a specific selective-bias function in the Lehmann sense. We implement the selective CRB for the special case of sparse vector estimation with an unknown support set. Finally, we demonstrate in simulations that the proposed selective CRB is an informative lower bound on the performance of the maximum selected likelihood estimator for a general linear model with the generalized information criterion and for sparse vector estimation with one step thresholding. It is shown that for these cases the selective CRB outperforms the oracle CRB and Sando-Mitra-Stoica CRB (SMS-CRB) [1].
翻译:在许多实际的参数估算问题中,例如多元回归系数估计,真实模型是未知的,因此,在估算之前将执行一个模型选择步骤。基于数据的模型选择步骤会影响随后的估算。特别是,基于对真实模型知识的奥克莱尔·Cram\'er-Rao约束(CRB)标准(CRB)不适于在无症状区域之外进行后选绩效分析和系统设计。在本文中,我们用一个未知的支持集来调查一个矢量的后选参数估算,而该支持集代表模型。我们分析了将非选择参数强制将非选择参数推向零的一致估算器的估计性能。我们使用以对真实模型偏差的Cram\'er-Rao绑定(Cram_er-Rao)标准,我们用一个特定选择性的估定的C-S-Sloadoral-BerroralS 标准来测试一个特定的C-C-Sloadal-roadal-roadal-modeal-rodeal-C-rodeal-rodeal-mocal-modeal-modeal-modeal-modeal-mocal-mode-mocal-mocal-mocal-mocal-mocal-mocal-modeal-mocal-mocal-moc-moc-mocal-moc-moc-mologal-modal-moc-moc-mologis),我们,我们,我们,我们用了一个在选择的C-mocal-moc-moc-moc-mocal-moc-moc-mocal-mocal-molog-mocal-moc-mode-modeal-modeal-moc-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocual-mocal-modal-mocucucucucument-mocument-mocucumental-mocal-moc-moc-mocal-moc-moc-moc-mocal-mo