Multimodal recommender systems (MRSs) are critical for various online platforms, offering users more accurate personalized recommendations by incorporating multimodal information of items. Structure-based MRSs have achieved state-of-the-art performance by constructing semantic item graphs, which explicitly model relationships between items based on modality feature similarity. However, such semantic item graphs are often noisy due to 1) inherent noise in multimodal information and 2) misalignment between item semantics and user-item co-occurrence relationships, which introduces false links and leads to suboptimal recommendations. To address this challenge, we propose Item Graph Diffusion for Multimodal Recommendation (IGDMRec), a novel method that leverages a diffusion model with classifier-free guidance to denoise the semantic item graph by integrating user behavioral information. Specifically, IGDMRec introduces a Behavior-conditioned Graph Diffusion (BGD) module, incorporating interaction data as conditioning information to guide the denoising of the semantic item graph. Additionally, a Conditional Denoising Network (CD-Net) is designed to implement the denoising process with manageable complexity. Finally, we propose a contrastive representation augmentation scheme that leverages both the denoised item graph and the original item graph to enhance item representations. \LL{Extensive experiments on four real-world datasets demonstrate the superiority of IGDMRec over competitive baselines, with robustness analysis validating its denoising capability and ablation studies verifying the effectiveness of its key components.
翻译:多模态推荐系统(MRSs)对于各类在线平台至关重要,它通过整合物品的多模态信息,为用户提供更精准的个性化推荐。基于结构的MRSs通过构建语义物品图,基于模态特征相似性显式建模物品间关系,已取得最先进的性能。然而,此类语义物品图常因以下原因存在噪声:1)多模态信息固有的噪声;2)物品语义与用户-物品共现关系之间的错位,这引入了虚假连接并导致次优推荐。为应对这一挑战,我们提出用于多模态推荐的物品图扩散方法(IGDMRec),这是一种利用具有无分类器引导的扩散模型、通过整合用户行为信息对语义物品图进行去噪的新方法。具体而言,IGDMRec引入了一个行为条件图扩散(BGD)模块,将交互数据作为条件信息来指导语义物品图的去噪。此外,设计了一个条件去噪网络(CD-Net),以可控的复杂度实现去噪过程。最后,我们提出了一种对比表示增强方案,利用去噪后的物品图和原始物品图来增强物品表示。在四个真实数据集上的大量实验证明了IGDMRec相对于竞争基线的优越性,鲁棒性分析验证了其去噪能力,消融研究则证实了其关键组件的有效性。