The continuous nature of belief states in POMDPs presents significant computational challenges in learning the optimal policy. In this paper, we consider an approach that solves a Partially Observable Reinforcement Learning (PORL) problem by approximating the corresponding POMDP model into a finite-state Markov Decision Process (MDP) (called Superstate MDP). We first derive theoretical guarantees that improve upon prior work that relate the optimal value function of the transformed Superstate MDP to the optimal value function of the original POMDP. Next, we propose a policy-based learning approach with linear function approximation to learn the optimal policy for the Superstate MDP. Consequently, our approach shows that a POMDP can be approximately solved using TD-learning followed by Policy Optimization by treating it as an MDP, where the MDP state corresponds to a finite history. We show that the approximation error decreases exponentially with the length of this history. To the best of our knowledge, our finite-time bounds are the first to explicitly quantify the error introduced when applying standard TD learning to a setting where the true dynamics are not Markovian.


翻译:部分可观测马尔可夫决策过程(POMDP)中信念状态的连续性给学习最优策略带来了显著的计算挑战。本文提出一种方法,通过将对应的POMDP模型近似为有限状态马尔可夫决策过程(称为超状态MDP)来解决部分可观测强化学习(PORL)问题。我们首先推导了理论保证,改进了先前工作中关于变换后的超状态MDP最优值函数与原POMDP最优值函数关系的研究。接着,我们提出一种基于线性函数近似的策略学习方法,用于学习超状态MDP的最优策略。因此,我们的方法表明,通过将POMDP视为MDP(其中MDP状态对应有限历史),可以先用时序差分学习再通过策略优化来近似求解。我们证明了近似误差随历史长度呈指数级下降。据我们所知,我们的有限时间界首次明确量化了在真实动态非马尔可夫性的场景中应用标准时序差分学习时引入的误差。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员