E-commerce platforms usually display a mixed list of ads and organic items in feed. One key problem is to allocate the limited slots in the feed to maximize the overall revenue as well as improve user experience, which requires a good model for user preference. Instead of modeling the influence of individual items on user behaviors, the arrangement signal models the influence of the arrangement of items and may lead to a better allocation strategy. However, most of previous strategies fail to model such a signal and therefore result in suboptimal performance. To this end, we propose Cross Deep Q Network (Cross DQN) to extract the arrangement signal by crossing the embeddings of different items and processing the crossed sequence in the feed. Our model results in higher revenue and better user experience than state-of-the-art baselines in offline experiments. Moreover, our model demonstrates a significant improvement in the online A/B test and has been fully deployed on Meituan feed to serve more than 300 millions of customers.


翻译:电子商务平台通常显示不同广告和供货有机物品的混合清单。 一个关键问题是分配进料中有限的空档,以尽量扩大总收入,并改进用户经验,这需要一种良好的用户偏好模式。 安排模式不是模拟单个项目对用户行为的影响,而是模拟项目安排的影响,并可能导致更好的分配战略。然而,以往的大多数战略都未能模拟这种信号,因而造成不理想的性能。 为此,我们提议跨过不同项目的嵌入并处理进料中的跨顺序,以提取安排信号。我们的模型结果是收入高于离线实验中最先进的基线。此外,我们的模型显示在线A/B测试有显著改进,并完全安装在Meituan的种子上,为3亿多客户服务。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2018年11月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月31日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
5+阅读 · 2021年2月15日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2018年11月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员