In this paper we present TweetNLP, an integrated platform for Natural Language Processing (NLP) in social media. TweetNLP supports a diverse set of NLP tasks, including generic focus areas such as sentiment analysis and named entity recognition, as well as social media-specific tasks such as emoji prediction and offensive language identification. Task-specific systems are powered by reasonably-sized Transformer-based language models specialized on social media text (in particular, Twitter) which can be run without the need for dedicated hardware or cloud services. The main contributions of TweetNLP are: (1) an integrated Python library for a modern toolkit supporting social media analysis using our various task-specific models adapted to the social domain; (2) an interactive online demo for codeless experimentation using our models; and (3) a tutorial covering a wide variety of typical social media applications.
翻译:本文介绍TweetNLP,这是社交媒体中一个综合的自然语言处理平台。TweetNLP支持一套不同的自然语言处理平台任务,包括情绪分析和名称实体确认等通用重点领域,以及社会媒体特有任务,如emoji预测和攻击性语言识别。具体任务系统由以社会媒体文本(特别是Twitter)为主的、规模合理的基于变异器的语言模式提供动力,这些模式无需专门的硬件或云服务即可运行。TweetNLP的主要贡献是:(1) 一个综合的Python图书馆,用于使用现代工具包,支持社会媒体分析,使用我们适应社会领域的各种特定任务模式;(2) 一个互动在线演示,用于使用我们的模式进行无规范实验;以及(3) 一个辅导,涵盖广泛的典型社交媒体应用。