We present PSEUDo, an adaptive feature learning technique for exploring visual patterns in multi-track sequential data. Our approach is designed with the primary focus to overcome the uneconomic retraining requirements and inflexible representation learning in current deep learning-based systems. Multi-track time series data are generated on an unprecedented scale due to increased sensors and data storage. These datasets hold valuable patterns, like in neuromarketing, where researchers try to link patterns in multivariate sequential data from physiological sensors to the purchase behavior of products and services. But a lack of ground truth and high variance make automatic pattern detection unreliable. Our advancements are based on a novel query-aware locality-sensitive hashing technique to create a feature-based representation of multivariate time series windows. Most importantly, our algorithm features sub-linear training and inference time. We can even accomplish both the modeling and comparison of 10,000 different 64-track time series, each with 100 time steps (a typical EEG dataset) under 0.8 seconds. This performance gain allows for a rapid relevance feedback-driven adaption of the underlying pattern similarity model and enables the user to modify the speed-vs-accuracy trade-off gradually. We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability through a quantitative performance comparison and a qualitative visual quality comparison to the state-of-the-art algorithms in the field. Moreover, we showcase the usability of PSEUDo through a case study demonstrating our visual pattern retrieval concepts in a large meteorological dataset. We find that our adaptive models can accurately capture the user's notion of similarity and allow for an understandable exploratory visual pattern retrieval in large multivariate time series datasets.


翻译:我们展示了用于探索多轨相继数据的视觉模式的适应性特征学习技术PSEUDo。我们的方法设计以克服当前深层学习系统不经济的再培训和不灵活代表性学习为主。多轨时间序列数据由于传感器和数据存储的增加而以前所未有的规模生成。这些数据集具有宝贵的模式,如神经营销,研究人员试图将生理传感器的多变顺序数据模式与购买产品和服务的行为联系起来。但缺乏地面真实性和高差异使得自动模式探测不可靠。我们的进步基于一种新的对地感了解的对地差敏感的超灵活代表学习技术,以创建多变时间序列窗口的基于特征的表述。最重要的是,我们的算法具有多线性培训和推导时间。我们甚至可以完成10 000种不同的64轨时间序列的建模和比较,每套100个时间步骤(典型的EEEG数据集)在0.8秒内找到。这一业绩增益使得基础模式的快速相关性反馈调整能够让我们的直观性调整,使用户能够通过直径可读性模式模型来修改多变易地显示多式时间性数据质量。我们通过高度的直观性数据在高级的直径比度数据中,我们通过直观性、我们通过直径递性数据质量数据展示的轨性数据质量数据测试中,我们可以让我们性能、我们通过直观性数据在直观性判变化的判读取性能数据判读取性数据。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
105+阅读 · 2020年3月22日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员