Telegram is one of the most used instant messaging apps worldwide. Some of its success lies in providing high privacy protection and social network features like the channels -- virtual rooms in which only the admins can post and broadcast messages to all its subscribers. However, these same features contributed to the emergence of borderline activities and, as is common with Online Social Networks, the heavy presence of fake accounts. Telegram started to address these issues by introducing the verified and scam marks for the channels. Unfortunately, the problem is far from being solved. In this work, we perform a large-scale analysis of Telegram by collecting 35,382 different channels and over 130,000,000 messages. We study the channels that Telegram marks as verified or scam, highlighting analogies and differences. Then, we move to the unmarked channels. Here, we find some of the infamous activities also present on privacy-preserving services of the Dark Web, such as carding, sharing of illegal adult and copyright protected content. In addition, we identify and analyze two other types of channels: the clones and the fakes. Clones are channels that publish the exact content of another channel to gain subscribers and promote services. Instead, fakes are channels that attempt to impersonate celebrities or well-known services. Fakes are hard to identify even by the most advanced users. To detect the fake channels automatically, we propose a machine learning model that is able to identify them with an accuracy of 86%. Lastly, we study Sabmyk, a conspiracy theory that exploited fakes and clones to spread quickly on the platform reaching over 1,000,000 users.


翻译:电讯是全世界最常用的即时信息应用软件之一。 其成功之处在于提供高隐私保护和社交网络功能, 如频道等。 只有管理员才能将信息发送和广播给所有用户的虚拟房间。 然而, 这些功能也促成了边界活动的出现, 并且像在线社会网络一样, 大量存在假账户。 电报开始通过为频道引入经核实和骗骗骗标记来解决这些问题。 不幸的是, 问题远未解决。 在这项工作中, 我们通过收集35 382个不同频道和130 000 000多条信息, 对Telegram用户进行大规模分析。 我们研究Telegram标记作为核实或骗局的频道, 突出模拟和差异。 然后, 我们进入了无标记的频道。 这里, 我们发现暗网的隐私保护服务也存在一些臭名昭著的活动, 例如卡片、 分享非法成人和版权保护的内容。 此外, 我们发现并分析了另外两种类型的频道: 克隆人和假的。 克隆人是发布另一个频道的准确内容的频道, 来获取最精确的密码, 来自动地检测。

0
下载
关闭预览

相关内容

Telegram Messenger是一个跨平台的实时通信软件,它的客户端是自由及开放源代码软件,但是它的服务器是专有软件。用户可以相互交换加密与自析构的消息,以及照片、视频、文件,支持所有的文件类型。( 维基百科
专知会员服务
31+阅读 · 2020年10月13日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
9+阅读 · 2019年11月15日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2020年10月13日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员