We consider the problem of finding an edge in a hidden undirected graph $G = (V, E)$ with $n$ vertices, in a model where we only allowed queries that ask whether or not a subset of vertices contains an edge. We study the non-adaptive model and show that while in the deterministic model the optimal algorithm requires $\binom{n}{2}$ queries (i.e., querying for any possible edge separately), in the randomized model $\tilde{\Theta}(n)$ queries are sufficient (and needed) in order to find an edge. In addition, we study the query complexity for specific families of graphs, including Stars, Cliques, and Matchings, for both the randomized and deterministic models. Lastly, for general graphs, we show a trade-off between the query complexity and the number of rounds, $r$, made by an adaptive algorithm. We present two algorithms with $O(rn^{2/r})$ and $\tilde{O}(rn^{1/r})$ sample complexity for the deterministic and randomized models, respectively.
翻译:我们考虑了在隐藏的无方向图形$G = (V, E) = (V, E) = (n) 的顶点中找到一个边缘的问题。 在这种模型中,我们只允许询问是否有一个子脊是否含有边缘。 我们研究了非适应模型, 并表明在确定模型中, 最佳算法需要$\binom{n ⁇ 2} $(即单独查询任何可能的边缘) 的查询, 在随机模型 $\tilde}(n) 的查询中找到一个边点( 需要) 足以找到边点。 此外, 我们研究包括恒星、 Cliques 和 匹配在内的图表特定组群的查询复杂性, 包括随机模型和确定模型。 最后, 在一般图表中, 我们显示了查询复杂性与调适的算法所制作的回合数( $O\2/r} $ 和 $\ tilde{ O} (r\ r}) 样本。