This work settles the problem of constructing entropy stable non-oscillatory (ESNO) fluxes by framing it as a least square optimization problem. A flux sign stability condition is introduced and utilized to construct arbitrary order entropy stable flux as a convex combination of entropy conservative and non-oscillatory flux. This simple approach is robust which does not explicitly requires the computation of costly dissipation operator and high order reconstruction of scaled entropy variable for constructing the diffusion term. The numerical diffusion is optimized in the sense that entropy stable flux reduces to the underlying non-oscillatory flux. Different non-oscillatory entropy stable fluxes are constructed and used to compute the numerical solution of various standard scalar and systems test problems. Computational results show that entropy stable schemes are comparable in term of non-oscillatory nature of schemes using only the underlying non-oscillatory fluxes. Moreover, these entropy stable schemes maintains the formal order of accuracy of the lower order flux used in the convex combination.


翻译:这项工作解决了构建 entropy 稳定非血管(ESNO) 通量的问题,将之设计为最小优化问题。引入并使用通量符号稳定性条件来构建任意顺序的 entropy 稳定通量,作为各种标准天平和系统测试问题的数值解决方案。比较结果显示,在仅仅使用基本非血管通量的情况下,酶稳定计划在非血管性质方面是可比较的。此外,这些酶稳定计划保持了锥体组合中使用的低序通量的准确度。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年9月23日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
117+阅读 · 2020年5月28日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年4月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月12日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年9月23日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
117+阅读 · 2020年5月28日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月19日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员