The recent development of artificial intelligence (AI) has increased the interest of researchers and practitioners towards applying its techniques into multiple domains like automotive, health care and air space to achieve automation. Combined to these applications, the attempt to use AI techniques into carrying out safety issues is momentarily at a progressive state. As AI problems are getting even more complex, large processing power is demanded for safety-critical systems to fulfill real-time requirements. These challenges can be solved through edge or cloud computing, which makes the communication an integral part of the solution. This study aims at providing a comprehensive picture of the state of the art AI based safety solutions that uses different communication technologies in diverse application domains. To achieve this, a systematic mapping study is conducted and 565 relevant papers are shortlisted through a multistage selection process, which are then analyzed according to a systematically defined classification framework. The results of the study are based on these main objectives: to clarify current research gaps in the field, to identify the possibility of increased usage of cellular communication in multiple domains, to identify the mostly used AI algorithms and to summarize the emerging future research trends on the topic. The results demonstrate that automotive domain is the one applying AI and communication the most to implement safety and the most used AI in this domain is neural networks, clustering and computer vision; applying cellular communication to automotive domain is highest; the use of non-cellular communication technologies is dominant however a clear trend of a rapid increase in the use of cellular communication is observed specially from 2020 with the roll-out of 5G technology.


翻译:最近人工智能(AI)的发展提高了研究人员和从业者将其技术应用于汽车、保健和空气空间等多种领域以实现自动化的兴趣。除了这些应用外,试图使用人工智能技术解决安全问题的尝试正在逐步发展。随着人工智能问题变得更加复杂,要求对安全关键系统拥有巨大的处理能力,以满足实时要求。这些挑战可以通过边缘或云计算来解决,使通信成为解决方案的一个组成部分。本研究的目的是全面介绍以AI为基础的、在不同应用领域使用不同通信技术的先进安全解决方案的状况。为了实现这一点,进行了系统的绘图研究,通过多阶段选择程序将565份相关文件短名单,然后根据系统界定的分类框架对其进行分析。研究结果以这些主要目标为基础:澄清目前实地研究的差距,确定在多个领域增加使用蜂窝通信的可能性,确定大部分使用的AI算法,并总结关于这一专题的未来研究趋势。结果显示,在应用AI和移动电话网络的最清晰的是一个应用的移动式网络。在互联网和移动式通信网络中,使用最安全的是使用最先进的一个移动式网络。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员