2D Total Variation Denoising (TVD) is a widely used technique for image denoising. It is also an important nonparametric regression method for estimating functions with heterogenous smoothness. Recent results have shown the TVD estimator to be nearly minimax rate optimal for the class of functions with bounded variation. In this paper, we complement these worst case guarantees by investigating the adaptivity of the TVD estimator to functions which are piecewise constant on axis aligned rectangles. We rigorously show that, when the truth is piecewise constant, the ideally tuned TVD estimator performs better than in the worst case. We also study the issue of choosing the tuning parameter. In particular, we propose a fully data driven version of the TVD estimator which enjoys similar worst case risk guarantees as the ideally tuned TVD estimator.
翻译:2D 全部变化脱色 (TVD) 是一种广泛使用的图像脱色技术。 它也是一个重要的非参数回归法, 用来以异质光滑来估计函数。 最近的结果显示, TVD 估计值对于功能类别而言几乎是最小速率最佳的, 且有约束变异。 在本文中, 我们通过调查 TVD 估计值的适应性来补充这些最差的病例保障, 这些函数在轴对齐矩形上是小行星常态的。 我们严格地显示, 当事实不变时, 理想的调控 TVD 估计值比最坏的情况要好。 我们还研究选择调试参数的问题。 特别是, 我们提出了一个完全以数据驱动为驱动的 TVD 估计值版本, 其风险与理想的调控 TVD 估计值相近似。