Large generative models (for example, language and diffusion models) enable high-quality text and image synthesis but are hard to train or adapt in cross-device federated settings due to heavy computation and communication and statistical/system heterogeneity. We propose FedGen-Edge, a framework that decouples a frozen, pre-trained global backbone from lightweight client-side adapters and federates only the adapters. Using Low-Rank Adaptation (LoRA) constrains client updates to a compact subspace, which reduces uplink traffic by more than 99 percent versus full-model FedAvg, stabilizes aggregation under non-IID data, and naturally supports personalization because each client can keep a locally tuned adapter. On language modeling (PTB) and image generation (CIFAR-10), FedGen-Edge achieves lower perplexity/FID and faster convergence than strong baselines while retaining a simple FedAvg-style server. A brief ablation shows diminishing returns beyond moderate LoRA rank and a trade-off between local epochs and client drift. FedGen-Edge offers a practical path toward privacy-preserving, resource-aware, and personalized generative AI on heterogeneous edge devices.
翻译:大型生成模型(例如语言模型和扩散模型)能够实现高质量的文本与图像合成,但由于其沉重的计算与通信开销以及统计/系统异质性,在跨设备联邦环境中难以训练或适配。我们提出FedGen-Edge框架,该框架将冻结的预训练全局主干网络与轻量级客户端适配器解耦,并仅对适配器进行联邦训练。采用低秩适配(LoRA)技术将客户端更新约束在紧凑的子空间中,相比全模型FedAvg减少超过99%的上行流量,在非独立同分布数据下稳定聚合过程,并天然支持个性化——每个客户端可保留本地调优的适配器。在语言建模(PTB)与图像生成(CIFAR-10)任务中,FedGen-Edge在保持简单FedAvg式服务器架构的同时,相比强基线实现了更低的困惑度/FID值与更快的收敛速度。简要消融实验表明:适度LoRA秩值后收益递减,且本地训练轮数与客户端漂移存在权衡关系。FedGen-Edge为异构边缘设备上实现隐私保护、资源感知及个性化的生成式人工智能提供了可行路径。