Kayal, Saha and Tavenas [Theory of Computing, 2018] showed that for all large enough integers $n$ and $d$ such that $d\geq \omega(\log{n})$, any syntactic depth four circuit of bounded individual degree $\delta = o(d)$ that computes the Iterated Matrix Multiplication polynomial ($IMM_{n,d}$) must have size $n^{\Omega\left(\sqrt{d/\delta}\right)}$. Unfortunately, this bound deteriorates as the value of $\delta$ increases. Further, the bound is superpolynomial only when $\delta$ is $o(d)$. It is natural to ask if the dependence on $\delta$ in the bound could be weakened. Towards this, in an earlier result [STACS, 2020], we showed that for all large enough integers $n$ and $d$ such that $d = \Theta(\log^2{n})$, any syntactic depth four circuit of bounded individual degree $\delta\leq n^{0.2}$ that computes $IMM_{n,d}$ must have size $n^{\Omega(\log{n})}$. In this paper, we make further progress by proving that for all large enough integers $n$ and $d$, and absolute constants $a$ and $b$ such that $\omega(\log^2n)\leq d\leq n^{a}$, any syntactic depth four circuit of bounded individual degree $\delta\leq n^{b}$ that computes $IMM_{n,d}$ must have size $n^{\Omega(\sqrt{d})}$. Our bound is obtained by carefully adapting the proof of Kumar and Saraf [SIAM J. Computing, 2017] to the complexity measure introduced in our earlier work [STACS, 2020].


翻译:Kayal、Sahah和Tavenas [2018年计算理论] 显示,对于所有足够大的整数美元和美元来说,如果美元=geq\ omega (log{n}) 美元,那么任何捆绑的个人度的四圈合金 $\delta = o(d) 美元,计算迭代矩阵乘数多式多式(IMM ⁇ n,d}$) 必须是 $@Ometigle\ left (\qrt{d{d/delta{right} $。 不幸的是,这个组合会随着美元 delta$的增加而恶化。 此外,当美元=delta $= 美元= 美元 美元 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元=

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【经典书】概率理论:科学逻辑,95页pdf
专知会员服务
77+阅读 · 2020年10月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年1月15日
Arxiv
0+阅读 · 2021年9月16日
VIP会员
相关主题
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2019年1月15日
Top
微信扫码咨询专知VIP会员