This paper considers the deconvolution problem in the case where the target signal is multidimensional and no information is known about the noise distribution. More precisely, no assumption is made on the noise distribution and no samples are available to estimate it: the deconvolution problem is solved based only on the corrupted signal observations. We establish the identifiability of the model up to translation when the signal has a Laplace transform with an exponential growth smaller than $2$ and when it can be decomposed into two dependent components. Then, we propose an estimator of the probability density function of the signal without any assumption on the noise distribution. As this estimator depends of the lightness of the tail of the signal distribution which is usually unknown, a model selection procedure is proposed to obtain an adaptive estimator in this parameter with the same rate of convergence as the estimator with a known tail parameter. Finally, we establish a lower bound on the minimax rate of convergence that matches the upper bound.
翻译:本文考虑了目标信号具有多维性且不知道噪音分布信息的情况下的分解问题。 更确切地说, 没有关于噪音分布的假设, 也没有样本来估计它: 分解问题只根据损坏的信号观测来解决。 我们确定模型的可识别性, 当信号变异时, 当信号的Laplace具有指数增长小于2美元的指数增长, 当它可以分解成两个独立的组件时 。 然后, 我们提出一个信号概率密度函数的估测符, 而不假定噪音分布 。 由于这个估计符取决于信号分布尾部的亮度, 这个信号分布的尾部通常不为人所知, 提议了一个模型选择程序, 以便在这个参数中获取一个适应性估计符, 其速度与带有已知尾参数的估测符相同。 最后, 我们设定一个与与上界相匹配的最小集速率的最小值连接的缩放线。