Many businesses depend on their mobile apps and websites, so user frustration while trying to complete a task on these channels can cause lost sales and complaints. In this research, I use clickstream data from a real e-commerce site to predict whether a session is frustrated or not. Frustration is defined using certain rules based on rage bursts, back and forth navigation (U turns), cart churn, search struggle, and long wandering sessions, and applies these rules to 5.4 million raw clickstream events (304,881 sessions). From each session, I build tabular features and train standard classifier models. I also use the full event sequence to train a discriminative LSTM classifier. XGBoost reaches about 90% accuracy, ROC AUC of 0.9579, while the LSTM performs best with about 91% accuracy and a ROC AUC of 0.9705. Finally, the research shows that with only the first 20 to 30 interactions, the LSTM already predicts frustration reliably.


翻译:许多企业依赖其移动应用和网站,用户在这些渠道尝试完成任务时产生的挫败感可能导致销售损失和投诉。本研究利用真实电商网站的点击流数据,预测会话是否处于挫败状态。挫败感的定义基于特定规则,包括操作爆发、反复导航(U型转向)、购物车流失、搜索挣扎以及长时间漫游会话,并将这些规则应用于540万条原始点击流事件(304,881个会话)。我从每个会话中构建表格特征,并训练标准分类器模型。同时利用完整事件序列训练判别式LSTM分类器。XGBoost模型达到约90%的准确率,ROC AUC为0.9579;而LSTM模型表现最佳,准确率约91%,ROC AUC达0.9705。最后研究表明,仅需前20至30次交互,LSTM已能可靠预测挫败感。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2021年7月27日
【WWW2021】大规模智能手机数据的异质联邦学习
专知会员服务
43+阅读 · 2021年3月8日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
11+阅读 · 2013年12月31日
Arxiv
0+阅读 · 12月19日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
11+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员