DL frameworks are the basis of constructing all DL programs and models, and thus their bugs could lead to the unexpected behaviors of any DL program or model relying on them. Such a wide effect demonstrates the necessity and importance of guaranteeing DL frameworks' quality. Understanding the characteristics of DL framework bugs is a fundamental step for this quality assurance task, facilitating designing effective bug detection and debugging approaches. Hence, in this work we conduct the most large-scale study on 1,000 bugs from four popular and diverse DL frameworks (i.e., TensorFlow, PyTorch, MXNet, and DL4J). By analyzing the root causes and symptoms of DL framework bugs associated with 5 components decomposed from DL frameworks, as well as measuring test coverage achieved by three state-of-the-art testing techniques, we obtain 12 major findings for the comprehensive understanding of DL framework bugs and the current status of existing DL framework testing practice, and then provide a series of actionable guidelines for better DL framework bug detection and debugging. Finally, based on the guidelines, we design and implement a prototype DL-framework testing tool, called TenFuzz, which is evaluated to be effective and finds 3 unknown bugs on the latest TensorFlow framework in a preliminary study, indicating the significance of our guidelines.


翻译:DL 框架是构建所有 DL 程序和模型的基础, 因此它们的错误可能导致任何 DL 程序或模型的意外行为。 如此广泛的效果表明保障 DL 框架质量的必要性和重要性。 了解 DL 框架错误的特性是质量保证任务的基本步骤, 有助于设计有效的错误检测和调试方法。 因此, 我们在此工作中对来自四个广受欢迎的和多样化 DL 框架( 即 TensorFlow、 PyTorrch、 MXNet 和 DL4J) 的1,000个错误进行了最大规模的研究, 并提供了一系列可操作的指导方针, 以便更好地检测 DL 框架错误和调试。 最后, 根据指导方针, 我们设计和实施一个未知的DLF 框架错误和 测试框架的原型, 也就是一个未知的DLF 测试模型, 并用一个未知的模型来评估。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
12+阅读 · 2019年3月14日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员