This paper introduces GIMP-ML v1.1, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising, de-hazing, matting, enlightening and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as k-means based color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, pytorch, open-cv, scipy. Apart from these, several image manipulation techniques using these plugins have been compiled and demonstrated in the YouTube channel (https://youtube.com/user/kritiksoman) with the objective of demonstrating the use-cases for machine learning based image modification. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows. The code and installation procedure for configuring these plugins is available at https://github.com/kritiksoman/GIMP-ML.
翻译:本文介绍了GIMP-ML v1.1, 这是一套广受欢迎的 GNU 图像管理程序( GIMP) 的 Python 插件。 它使得能够将计算机视觉的最新进步用于常规图像编辑管道。 来自深层学习的应用, 如单眼深度估计、语义分解、 蒙面的基因化对抗网络、 图像超分辨率、 脱鼻、 脱色、 交配、 启蒙和色彩化, 通过基于 Python 的插件与 GIMP 结合。 此外, 还添加了以 k- 手段为基础的彩色组合等图像的操作。 GIMP- ML 依赖标准 Python 软件包, 如 Numpy、 pytoch、 op- cv、 scipypy。 除此之外, 还在YouTube 频道( https://youtube.com/userview/kritiksoman) 上汇编和展示了使用这些插件的图像处理技术, IMPL 程序。