We present an intimate connection among the following fields: (a) distributed local algorithms: coming from the area of computer science, (b) finitary factors of iid processes: coming from the area of analysis of randomized processes, (c) descriptive combinatorics: coming from the area of combinatorics and measure theory. In particular, we study locally checkable labellings in grid graphs from all three perspectives. Most of our results are for the perspective (b) where we prove time hierarchy theorems akin to those known in the field (a) [Chang, Pettie FOCS 2017]. This approach that borrows techniques from the fields (a) and (c) implies a number of results about possible complexities of finitary factor solutions. Among others, it answers three open questions of [Holroyd et al. Annals of Prob. 2017] or the more general question of [Brandt et al. PODC 2017] who asked for a formal connection between the fields (a) and (b). In general, we hope that our treatment will help to view all three perspectives as a part of a common theory of locality, in which we follow the insightful paper of [Bernshteyn 2020+] .


翻译:我们展示了以下领域的紧密联系:(a) 分布式本地算法:(a) 分布式本地算法:来自计算机科学领域的本地算法;(b) iid过程的原始因素:来自随机化过程分析领域;(c) 描述性组合法:(c) 描述性组合法:来自组合法和测量理论领域;特别是,我们从所有三个角度研究网格图中的可本地核对标签;我们的大多数结果都来自以下角度:(b) 我们证明时间等级的标语类似于实地已知的标语(a) [Chang, Pettie FOCS 2017];这种方法从领域借用技术(a) 和(c) 意味着关于氟化因素解决方案可能的复杂性的若干结果;除其他外,它回答了[Holroud et al. Annals of Prob. 201717] 三个公开的问题,或更笼统的[Brandt et al. POCDC 2017] 问题,他们要求将领域(a)和(b) 正式连接起来。我们希望我们的处理方法将有助于将所有三个观点视为2020年共同理论的一部分。

0
下载
关闭预览

相关内容

PODC:ACM Symposium on Principles of Distributed Computing。 Explanation:分布式计算原理学术讨论会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/podc/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
5+阅读 · 2019年4月25日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员