Machine Learning (ML) has emerged as an attractive and viable technique to provide effective solutions for a wide range of application domains. An important application domain is vehicular networks wherein ML-based approaches are found to be very useful to address various problems. The use of wireless communication between vehicular nodes and/or infrastructure makes it vulnerable to different types of attacks. In this regard, ML and its variants are gaining popularity to detect attacks and deal with different kinds of security issues in vehicular communication. In this paper, we present a comprehensive survey of ML-based techniques for different security issues in vehicular networks. We first briefly introduce the basics of vehicular networks and different types of communications. Apart from the traditional vehicular networks, we also consider modern vehicular network architectures. We propose a taxonomy of security attacks in vehicular networks and discuss various security challenges and requirements. We classify the ML techniques developed in the literature according to their use in vehicular network applications. We explain the solution approaches and working principles of these ML techniques in addressing various security challenges and provide insightful discussion. The limitations and challenges in using ML-based methods in vehicular networks are discussed. Finally, we present observations and lessons learned before we conclude our work.


翻译:机器学习(ML)已成为为范围广泛的应用领域提供有效解决办法的一种有吸引力和可行的技术,其中一个重要的应用领域是车辆网络,其中发现以ML为基础的方法非常有助于解决各种问题; 使用车辆节点和/或基础设施之间的无线通信使其易受不同类型的攻击; 在这方面,ML及其变体越来越受欢迎,以侦测攻击和处理车辆通信中的各种安全问题; 本文介绍对车辆网络中不同安全问题以ML为基础的技术的全面调查; 我们首先简要介绍车辆网络和不同类型通信的基本原理; 除了传统的车辆网络之外,我们还考虑现代车辆网络结构; 我们提议对车辆网络中的安全攻击进行分类,并讨论各种安全挑战和要求; 我们将文献中开发的ML技术根据其在车辆网络应用方面的情况加以分类; 我们解释这些ML技术在应对各种安全挑战时采用的解决办法和工作原则; 我们最后讨论的是我们目前在工作中所学到的各种限制和挑战。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
1+阅读 · 2021年10月11日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
5+阅读 · 2020年8月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
1+阅读 · 2021年10月11日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
5+阅读 · 2020年8月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Top
微信扫码咨询专知VIP会员