Producing natural and accurate responses like human beings is the ultimate goal of intelligent dialogue agents. So far, most of the past works concentrate on selecting or generating one pertinent and fluent response according to current query and its context. These models work on a one-to-one environment, making one response to one utterance each round. However, in real human-human conversations, human often sequentially sends several short messages for readability instead of a long message in one turn. Thus messages will not end with an explicit ending signal, which is crucial for agents to decide when to reply. So the first step for an intelligent dialogue agent is not replying but deciding if it should reply at the moment. To address this issue, in this paper, we propose a novel Imagine-then-Arbitrate (ITA) neural dialogue model to help the agent decide whether to wait or to make a response directly. Our method has two imaginator modules and an arbitrator module. The two imaginators will learn the agent's and user's speaking style respectively, generate possible utterances as the input of the arbitrator, combining with dialogue history. And the arbitrator decides whether to wait or to make a response to the user directly. To verify the performance and effectiveness of our method, we prepared two dialogue datasets and compared our approach with several popular models. Experimental results show that our model performs well on addressing ending prediction issue and outperforms baseline models.


翻译:产生像人类这样的自然和准确的自然反应是智能对话代理人的最终目标。 到目前为止, 大部分过去的工作都集中在根据当前查询和背景选择或产生一个相关和流畅的反应。 这些模型在一对一的环境中工作, 每回合对一个发音做出一个反应。 但是, 在真正的人与人的对话中, 人类经常会先后发送一些简短的信息, 以便阅读, 而不是一个长的信息。 因此, 信息不会以明确的结束信号结束结束, 这对于代理人决定何时回复至关重要。 因此, 智能对话代理人的第一步不是回答, 而是决定它是否应该根据当前的询问和背景做出回应。 为了解决这个问题, 我们在本文件中提出一个新的想象式- 即时- 状态( ITA) 神经对话模式, 以帮助代理人决定是否等待还是直接做出回应。 我们的方法有两个想象器模块和一个仲裁模块。 两个想象器将分别学习代理人和用户发言风格的风格, 产生可能的言论作为仲裁员的投入, 与对话历史相结合。 并且为了解决这个问题, 仲裁员们决定是直接地 等待或对比我们两个用户的预测结果 。

0
下载
关闭预览

相关内容

【2020新书】Web应用安全,331页pdf
专知会员服务
23+阅读 · 2020年10月24日
专知会员服务
39+阅读 · 2020年9月6日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年1月8日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月13日
Arxiv
4+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2019年1月8日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员