BCH codes are important error correction codes, widely utilized due to their robust algebraic structure, multi-error correcting capability, and efficient decoding algorithms. Despite their practical importance and extensive study, their parameters, including dimension, minimum distance and Bose distance, remain largely unknown in general. This paper addresses this challenge by investigating the dimension and Bose distance of BCH codes of length $(q^m - 1)/\lambda$ over the finite field $\mathbb{F}_q$, where $\lambda$ is a positive divisor of $q - 1$. Specifically, for narrow-sense BCH codes of this length with $m \geq 4$, we derive explicit formulas for their dimension for designed distance $2 \leq \delta \leq (q^{\lfloor (2m - 1)/3 \rfloor + 1} - 1)/{\lambda} + 1$. We also provide explicit formulas for their Bose distance in the range $2 \leq \delta \leq (q^{\lfloor (2m - 1)/3 \rfloor + 1} - 1)/{\lambda}$. These ranges for $\delta$ are notably larger than the previously known results for this class of BCH codes. Furthermore, we extend these findings to determine the dimension and Bose distance for certain non-narrow-sense BCH codes of the same length. Applying our results, we identify several BCH codes with good parameters.


翻译:BCH 码是一类重要的纠错码,因其具有坚实的代数结构、多错误纠正能力以及高效的译码算法而得到广泛应用。尽管 BCH 码具有重要的实际意义并已被广泛研究,但其参数(包括维数、最小距离和 Bose 距离)在一般情况下大多未知。本文针对这一挑战,研究了有限域 $\mathbb{F}_q$ 上长度为 $(q^m - 1)/\lambda$ 的 BCH 码的维数与 Bose 距离,其中 $\lambda$ 是 $q - 1$ 的正因子。具体而言,对于 $m \geq 4$ 时该长度的狭义 BCH 码,我们针对设计距离 $2 \leq \delta \leq (q^{\lfloor (2m - 1)/3 \rfloor + 1} - 1)/{\lambda} + 1$ 推导了其维数的显式公式。此外,我们还针对 $2 \leq \delta \leq (q^{\lfloor (2m - 1)/3 \rfloor + 1} - 1)/{\lambda}$ 范围内的设计距离,给出了其 Bose 距离的显式公式。这些 $\delta$ 的取值范围明显大于此前已知的该类 BCH 码的结果。进一步地,我们将这些结果推广至相同长度的某些非狭义 BCH 码,确定了其维数与 Bose 距离。应用本文的结论,我们识别出了若干具有良好参数的 BCH 码。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员