Objective The evaluation of natural language processing (NLP) models for clinical text de-identification relies on the availability of clinical notes, which is often restricted due to privacy concerns. The NLP Sandbox is an approach for alleviating the lack of data and evaluation frameworks for NLP models by adopting a federated, model-to-data approach. This enables unbiased federated model evaluation without the need for sharing sensitive data from multiple institutions. Materials and Methods We leveraged the Synapse collaborative framework, containerization software, and OpenAPI generator to build the NLP Sandbox (nlpsandbox.io). We evaluated two state-of-the-art NLP de-identification focused annotation models, Philter and NeuroNER, using data from three institutions. We further validated model performance using data from an external validation site. Results We demonstrated the usefulness of the NLP Sandbox through de-identification clinical model evaluation. The external developer was able to incorporate their model into the NLP Sandbox template and provide user experience feedback. Discussion We demonstrated the feasibility of using the NLP Sandbox to conduct a multi-site evaluation of clinical text de-identification models without the sharing of data. Standardized model and data schemas enable smooth model transfer and implementation. To generalize the NLP Sandbox, work is required on the part of data owners and model developers to develop suitable and standardized schemas and to adapt their data or model to fit the schemas. Conclusions The NLP Sandbox lowers the barrier to utilizing clinical data for NLP model evaluation and facilitates federated, multi-site, unbiased evaluation of NLP models.
翻译:自然语言处理模型(NLP)临床文本去身份鉴定模型的评价取决于临床说明的提供情况,而临床说明往往因隐私问题而受到限制。NLP Sandbox是一种办法,通过采用一个联合的、模型到数据的方法,减轻国家语言处理模型缺乏的数据和评价框架的情况。通过采用一个联合的、模型到数据的方法,我们进一步验证了国家语言处理模型的性能,而无需分享多个机构的敏感数据。材料和方法。我们利用Synapse合作框架、集装箱化软件和OpenAPI发电机来建立NLP Sandbox (npsandbox.io) 。我们评估了两个最先进的NLP DSDB模型, 利用P Sandbox 模型和NL 定位重点说明重点说明模型,利用Philter 和 NURON;我们利用一个外部验证站点的数据进一步验证模型的模型的性能。我们展示了NLSDB箱的有用性,并提供了用户经验反馈。我们展示了使用NLSDB 模型来进行一个更贴的、更贴的NP Sandbox 标准的标准化的标准化模型和升级的标准化数据转换的模型和升级的模型, 数据化的模型和升级的SDL 将数据转换的模型用于SDMDSDSDMDDDDD DSDDD DSD D D D D D DSDSDS的模型用于S。