Inflow forecasts play an essential role in the management of hydropower reservoirs. Forecasts help operators schedule power generation in advance to maximise economic value, mitigate downstream flood risk, and meet environmental requirements. The horizon of operational inflow forecasts is often limited in range to ~2 weeks ahead, marking the predictability barrier of deterministic weather forecasts. Reliable inflow forecasts in the sub-seasonal to seasonal (S2S) range would allow operators to take proactive action to mitigate risks of adverse weather conditions, thereby improving water management and increasing revenue. This study outlines a method of deriving skilful S2S inflow forecasts using a case study reservoir in the Scottish Highlands. We generate ensemble inflow forecasts by training a linear regression model for the observed inflow onto S2S ensemble precipitation predictions from the European Centre for Medium-range Weather Forecasting (ECMWF). Subsequently, post-processing techniques from Ensemble Model Output Statistics are applied to derive calibrated S2S probabilistic inflow forecasts, without the application of a separate hydrological model. We find the S2S probabilistic inflow forecasts hold skill relative to climatological forecasts up to 6 weeks ahead. The inflow forecasts hold greater skill during winter compared with summer. The forecasts, however, struggle to predict high summer inflows, even at short lead-times. The potential for the S2S probabilistic inflow forecasts to improve water management and deliver increased economic value is confirmed using a stylised cost model. While applied to hydropower forecasting, the results and methods presented here are relevant to broader fields of water management and S2S forecasting applications.


翻译:水流预测在水力水库管理方面发挥着必不可少的作用。预测有助于操作者提前安排发电时间,以尽量扩大经济价值,减轻下游洪水风险,并满足环境要求。运行流量预测的地平面往往限制在距未来约2周的距离,这标志着确定性天气预报的可预测性障碍。次季节至季节(S2S)范围的可靠流量预测将使操作者能够采取积极主动的行动,减轻不利天气条件的风险,从而改善水管理和增加收入。本研究报告概述了利用苏格兰高原的案例研究库获得熟练的S2S2S流入预测的方法。我们通过对观察到的流入S2S2的直线回归模型进行培训,产生加速的流量预测。欧洲中度天气预报中心(ECMWF)的混合降水量预测预测往往具有可预测性。随后,通过综合模型输出的处理技术来得出校准S2S2S概率预测,从而改进流量预测。我们发现,S2S2系统流量预测的稳定性预测在苏格兰高地进行,在预测中采用更精确的预测,在预测中,在预测中采用更精确的时期进行,在预测中,在预测中,在预测中进行更精确的预测,在预测中进行。在预测中,在预测中,在预测中采用更精确的周期中进行,在预测是,在预测是,在预测,在预测中进行,在预测中进行,在预测,在预测中,在预测中,在预测中,在预测中进行更精确到预测的期间进行,在预测,在预测的周期中,在预测是比前进行。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
31+阅读 · 2021年6月12日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Hierarchically Regularized Deep Forecasting
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月11日
Time Series Forecasting Using Manifold Learning
Arxiv
0+阅读 · 2021年10月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员