We propose a block version of the randomized Gram-Schmidt process for computing a QR factorization of a matrix. Our algorithm inherits the major properties of its single-vector analogue from [Balabanov and Grigori, 2020] such as higher efficiency than the classical Gram-Schmidt algorithm and stability of the modified Gram-Schmidt algorithm, which can be refined even further by using multi-precision arithmetic. As in [Balabanov and Grigori, 2020], our algorithm has an advantage of performing standard high-dimensional operations, that define the overall computational cost, with a unit roundoff independent of the dominant dimension of the matrix. This unique feature makes the methodology especially useful for large-scale problems computed on low-precision arithmetic architectures. Block algorithms are advantageous in terms of performance as they are mainly based on cache-friendly matrix-wise operations, and can reduce communication cost in high-performance computing. The block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of Krylov basis, which in its turn is used in GMRES and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on the proposed randomized Gram-Schmidt algorithm, and validate them on nontrivial numerical examples.


翻译:我们提出一个随机的 Grem-Schmidt 进程块版,用于计算矩阵的QR因子化。我们的算法从[Balabanov和Grigori,2020年]继承了它从[Balabanov和Grigori,2020年]产生的单一矢量模拟的主要特性,例如比古典Gram-Schmidt算法的效率更高,以及修改的Gram-Schmidt算法的稳定性,这些算法甚至可以通过多精确度算法来进一步完善。正如在[Balabanovanov和Grigori,2020年]中一样,我们的算法具有执行标准高维度操作的优势,它界定了总计算成本,而总计算成本的单位圆形与矩阵的主导维度无关。这一独特特性使得其方法对于在低精度算计算结构中计算出的大规模问题特别有用。从功能上看,因为它们主要基于缓存的矩阵操作,可以降低高性计算中的通信成本。正如[B-Smid-S-Schmid 程序中的关键要素-Arnallov 构建了Krylov基基础,而该方法转而以直径Rylivi 的解法版本的模型的解法版本的解方法是这些版本的解的解法系的版本的版本的版本的解算法。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员