Today, intelligent voice assistant (VA) software like Amazon's Alexa, Google's Voice Assistant (GVA) and Apple's Siri have millions of users. These VAs often collect and analyze huge user data for improving their functionality. However, this collected data may contain sensitive information (e.g., personal voice recordings) that users might not feel comfortable sharing with others and might cause significant privacy concerns. To counter such concerns, service providers like Google present their users with a personal data dashboard (called `My Activity Dashboard'), allowing them to manage all voice assistant collected data. However, a real-world GVA-data driven understanding of user perceptions and preferences regarding this data (and data dashboards) remained relatively unexplored in prior research. To that end, in this work we focused on Google Voice Assistant (GVA) users and investigated the perceptions and preferences of GVA users regarding data and dashboard while grounding them in real GVA-collected user data. Specifically, we conducted an 80-participant survey-based user study to collect both generic perceptions regarding GVA usage as well as desired privacy preferences for a stratified sample of their GVA data. We show that most participants had superficial knowledge about the type of data collected by GVA. Worryingly, we found that participants felt uncomfortable sharing a non-trivial 17.7% of GVA-collected data elements with Google. The current My Activity dashboard, although useful, did not help long-time GVA users effectively manage their data privacy. Our real-data-driven study found that showing users even one sensitive data element can significantly improve the usability of data dashboards. To that end, we built a classifier that can detect sensitive data for data dashboard recommendations with a 95% F1-score and shows 76% improvement over baseline models.


翻译:今天,智能语音助理(VA)软件,如亚马逊的Alexa、谷歌的语音助理(GVA)和苹果的Siri等智能语音助理(VA)软件拥有数百万用户。然而,这些VA通常收集和分析巨大的用户数据,以改善其功能。然而,所收集的数据可能包含敏感信息(如个人语音录音),用户可能感到不舒服与他人分享,并可能引起重大隐私关切。为了消除这些关切,谷歌等服务提供商向用户展示了个人数据仪表盘(称为“Myact Dashboard ”),允许他们管理所有语音助理收集的数据。然而,真实的GVA数据(GVA)数据数据(和数据仪表)数据(GVA数据)数据(GVA数据)用户(GVA数据)数据样本(GVA数据)数据(GVA数据)数据(GVA数据)数据(数据)样本(GVA数据)数据(OVA数据)数据(数据)样本(GVA数据)数据(我们通过GVA数据)数据参与者(GVA数据)数据(GVA数据)数据)数据)数据(大量地展示了数据(ODVA数据)数据(数据)的样本样本样本样本样本数据)的样本样本样本样本样本数据(我们发现数据(O数据)参与者(ODDDDDVA数据)数据)数据)数据使用者(O数据)数据使用者(O数据)数据)数据(我們(DDDDDD(ODDDDDDDD)的模型(OI数据)数据(ODDDDD(OD)的基)的內。

0
下载
关闭预览

相关内容

【ICLR2021】彩色化变换器,Colorization Transformer
专知会员服务
9+阅读 · 2021年2月9日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
0+阅读 · 2021年11月25日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员