In this paper, we propose a new non-convex algorithm for solving the phase retrieval problem, i.e., the reconstruction of a signal $ \vx\in\H^n $ ($\H=\R$ or $\C$) from phaseless samples $ b_j=\abs{\langle \va_j, \vx\rangle } $, $ j=1,\ldots,m $. The proposed algorithm solves a new proposed model, perturbed amplitude-based model, for phase retrieval and is correspondingly named as {\em Perturbed Amplitude Flow} (PAF). We prove that PAF can recover $c\vx$ ($\abs{c} = 1$) under $\mathcal{O}(n)$ Gaussian random measurements (optimal order of measurements). Starting with a designed initial point, our PAF algorithm iteratively converges to the true solution at a linear rate for both real and complex signals. Besides, PAF algorithm needn't any truncation or re-weighted procedure, so it enjoys simplicity for implementation. The effectiveness and benefit of the proposed method are validated by both the simulation studies and the experiment of recovering natural images.
翻译:在本文中,我们提出一个新的非convex算法来解决阶段检索问题,即重建一个信号 $\ vx\ in\ h ⁇ n $ h ⁇ R$ 或$\ C$, 由无阶段样本 $ b_j ⁇ abs\ langle\ va_j, $\ vx\ rangle $, j= 1,\ ldots, m$。 拟议的算法解决了一个新的拟议模型, 以周遭的振动模型为基础, 供阶段检索, 并相应命名为 = em pertured 仪流 (PAF) (PAF) 。 我们证明PAF 可以在 $\ mabsc{c} = 1$ (n) 高斯随机测量值( 最佳测量值) $, $jexx\ $, $ jx\\ langle, $。 从设计的初步点开始, 我们的PAF 算法以真实和复杂信号的线性速度与真正的解决办法相交融合。 此外, PAF 不需要任何 truncurvication 或重新校验的测试方法。