For three decades, carrier-phase observations have been used to obtain the most accurate location estimates using global navigation satellite systems (GNSS). These estimates are computed by minimizing a nonlinear mixed-integer least-squares problem. Existing algorithms linearize the problem, orthogonally project it to eliminate real variables, and then solve the integer least-square problem. There is now considerable interest in developing similar localization techniques for terrestrial and indoor settings. We show that algorithms that linearize first fail in these settings and we propose several algorithms for computing the estimates. Some of our algorithms are elimination algorithms that start by eliminating the non-linear terms in the constraints; others construct a geometric arrangement that allows us to efficiently enumerate integer solutions (in polynomial time). We focus on simplified localization problems in which the measurements are range (distance) measurements and carrier phase range measurements, with no nuisance parameters. The simplified problem allows us to focus on the core question of untangling the nonlinearity and the integer nature of some parameters. We show using simulations that the new algorithms are effective at close ranges at which the linearize-first approach fails.


翻译:三十年来,载波相位观测一直被用于通过全球导航卫星系统(GNSS)获得最精确的定位估计。这些估计值通过求解一个非线性混合整数最小二乘问题得到。现有算法首先将问题线性化,然后通过正交投影消除实数变量,最后求解整数最小二乘问题。目前,为地面和室内环境开发类似的定位技术引起了广泛关注。我们证明了在这些环境中,先进行线性化的算法会失效,并提出了几种计算估计值的新算法。我们的一些算法是消元算法,它们首先消除约束中的非线性项;另一些算法则构建了一种几何排列,使我们能够高效地(在多项式时间内)枚举整数解。我们专注于简化的定位问题,其中测量值为距离测量和载波相位距离测量,且不含多余参数。简化问题使我们能够专注于解决某些参数的非线性和整数性质这一核心问题。通过仿真实验,我们证明了新算法在近距离范围内是有效的,而先线性化的方法在该范围内会失效。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
[NeurIPS 2020] 球形嵌入的深度度量学习
专知会员服务
17+阅读 · 2020年11月8日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员