We develop a spectral approach for identifying and estimating average counterfactual outcomes under a low-rank factor model with short panel data and general outcome missingness patterns. Applications include event studies and studies of outcomes of "matches" between agents of two types, e.g. people and places, typically conducted using less-flexible Two-Way Fixed Effects (TWFE) models of outcomes. Given finite observed outcomes per unit, we show our approach identifies all counterfactual outcome means, including those not identified by existing methods, if a particular graph algorithm determines that units' sets of observed outcomes have sufficient overlap. Our analogous, computationally efficient estimation procedure yields consistent, asymptotically normal estimates of counterfactual outcome means under fixed-$T$ (number of outcomes), large-$N$ (sample size) asymptotics. When estimating province-level averages of held-out wages from an Italian matched employer-employee dataset, our estimator outperforms a TWFE-model-based estimator.
翻译:我们提出了一种谱方法,用于在低秩因子模型下识别和估计平均反事实结果,该方法适用于短面板数据及一般性的结果缺失模式。其应用场景包括事件研究以及针对两类主体(例如人员与地点)间“匹配”结果的研究,这类研究通常采用灵活性较低的**双向固定效应**模型进行。在每单位观测结果有限的情况下,我们证明,若特定图算法判定各单位的观测结果集具有充分的重叠性,则我们的方法能够识别所有反事实结果均值,包括现有方法无法识别的部分。我们提出的计算高效估计算法在固定$T$(结果数量)、大$N$(样本量)的渐近框架下,能够获得一致且渐近正态的反事实结果均值估计量。在基于意大利雇主-雇员匹配数据集中估算省份层面隐藏工资的平均值时,我们的估计量表现优于基于TWFE模型的估计量。