As computation shifts from the cloud to the edge to reduce processing latency and network traffic, the resulting Computing Continuum (CC) creates a dynamic environment where it is challenging to meet strict Quality of Service (QoS) requirements and avoid service instance overload. Existing methods often prioritize global metrics, overlooking per-client QoS, which is crucial for latency-sensitive and reliability-critical applications. We propose QEdgeProxy, a decentralized QoS-aware load balancer that acts as a proxy between IoT devices and service instances in CC. We formulate the load balancing problem as a Multi-Player Multi-Armed Bandit (MP-MAB) with heterogeneous rewards, where each load balancer autonomously selects service instances that maximize the probability of meeting its clients' QoS targets by using Kernel Density Estimation (KDE) to estimate QoS success probabilities. It also incorporates an adaptive exploration mechanism to recover rapidly from performance shifts and non-stationary conditions. We present a Kubernetes-native QEdgeProxy implementation and evaluate it on an emulated CC testbed deployed on a K3s cluster with realistic network conditions and a latency-sensitive edge-AI workload. Results show that QEdgeProxy significantly outperforms proximity-based and reinforcement-learning baselines in per-client QoS satisfaction, while adapting effectively to load surges and instance availability changes.
翻译:随着计算从云端向边缘转移以降低处理延迟和网络流量,所形成的计算连续体(CC)创造了一个动态环境,在此环境中满足严格的服务质量(QoS)要求并避免服务实例过载具有挑战性。现有方法通常优先考虑全局指标,忽视了对于延迟敏感和可靠性关键应用至关重要的每客户端QoS。我们提出QEdgeProxy,一种去中心化的服务质量感知负载均衡器,它在计算连续体中充当物联网设备与服务实例之间的代理。我们将负载均衡问题建模为具有异构奖励的多玩家多臂老虎机(MP-MAB)问题,其中每个负载均衡器通过使用核密度估计(KDE)来估计QoS成功概率,从而自主选择能够最大化满足其客户端QoS目标概率的服务实例。它还融入了一种自适应探索机制,以快速从性能波动和非平稳条件中恢复。我们提出了一种原生Kubernetes的QEdgeProxy实现,并在部署于K3s集群、具备真实网络条件和延迟敏感边缘AI工作负载的仿真CC测试平台上对其进行了评估。结果表明,QEdgeProxy在每客户端QoS满意度方面显著优于基于邻近性和强化学习的基线方法,同时能有效适应负载激增和实例可用性变化。