The Artificial Intelligence Generated Content (AIGC) technique has gained significant traction for producing diverse content. However, existing AIGC services typically operate within a centralized framework, resulting in high response times. To address this issue, we integrate collaborative Mobile Edge Computing (MEC) technology to reduce processing delays for AIGC services. Current collaborative MEC methods primarily support single-server offloading or facilitate interactions among fixed Edge Servers (ESs), limiting flexibility and resource utilization across all ESs to meet the varying computing and networking requirements of AIGC services. We propose AMCoEdge, an adaptive multi-server collaborative MEC approach to enhancing AIGC service efficiency. The AMCoEdge fully utilizes the computing and networking resources across all ESs through adaptive multi-ES selection and dynamic workload allocation, thereby minimizing the offloading make-span of AIGC services. Our design features an online distributed algorithm based on deep reinforcement learning, accompanied by theoretical analyses that confirm an approximate linear time complexity. Simulation results show that our method outperforms state-of-the-art baselines, achieving at least an 11.04% reduction in task offloading make-span and a 44.86% decrease in failure rate. Additionally, we develop a distributed prototype system to implement and evaluate our AMCoEdge method for real AIGC service execution, demonstrating service delays that are 9.23% - 31.98% lower than the three representative methods.
翻译:人工智能生成内容(AIGC)技术在生成多样化内容方面获得了广泛关注。然而,现有的AIGC服务通常在集中式框架下运行,导致响应时间较长。为解决此问题,我们整合了协作式移动边缘计算(MEC)技术以降低AIGC服务的处理延迟。现有的协作式MEC方法主要支持单服务器卸载或促进固定边缘服务器(ES)间的交互,限制了跨所有ES的灵活性和资源利用率,难以满足AIGC服务多样化的计算与网络需求。我们提出AMCoEdge——一种自适应多服务器协作MEC方法,以提升AIGC服务效率。该方法通过自适应多ES选择与动态工作负载分配,充分利用所有ES的计算与网络资源,从而最小化AIGC服务的卸载完工时间。我们的设计采用基于深度强化学习的在线分布式算法,并辅以理论分析,证实其具有近似线性的时间复杂度。仿真结果表明,我们的方法优于现有先进基线方案,在任务卸载完工时间上至少降低11.04%,失败率减少44.86%。此外,我们开发了分布式原型系统来实施并评估AMCoEdge方法在实际AIGC服务中的执行效果,结果显示其服务延迟较三种代表性方法降低了9.23%至31.98%。