The rapid development of modern science and technology has spawned rich scientific topics to research and endless production of literature in them. Just like X-ray imaging in medicine, can we intuitively identify the development limit and internal evolution pattern of scientific topic from the relationship of massive knowledge? To answer this question, we collect 71431 seminal articles of topics that cover 16 disciplines and their citation data, and extracts the "idea tree" of each topic to restore the structure of the development of 71431 topic networks from scratch. We define the Knowledge Entropy (KE) metric, and the contribution of high knowledge entropy nodes to increase the depth of the idea tree is regarded as the basis for topic development. By observing "X-ray images" of topics, We find two interesting phenomena: (1) Even though the scale of topics may increase unlimitedly, there is an insurmountable cap of topic development: the depth of the idea tree does not exceed 6 jumps, which coincides with the classical "Six Degrees of Separation"! (2) It is difficult for a single article to contribute more than 3 jumps to the depth of its topic, to this end, the continuing increase in the depth of the idea tree needs to be motivated by the influence relay of multiple high knowledge entropy nodes. Through substantial statistical fits, we derive a unified quantitative relationship between the change in topic depth ${\Delta D}^t(v)$ and the change in knowledge entropy over time ${KE}^t\left(v\right)$ of the article $v$ driving the increase in depth in the topic: ${\Delta D}^t(v) \approx \log \frac{KE^{t}(v)}{\left(t-t_{0}\right)^{1.8803}}$ , which can effectively portray evolution patterns of topics and predict their development potential. The various phenomena found by scientific x-ray may provide a new paradigm for explaining and understanding the evolution of science and technology.


翻译:现代科技的快速发展为研究和无休止的文献制作带来了丰富的科学课题。 就像医学中的X射线成像一样, 我们能否直观地从大量知识的关系中确定科学课题的发展极限和内部演变模式? 为了回答这个问题, 我们收集了71431篇涉及16个学科及其引用数据的主题的开创性文章, 并提取了每个专题的“ 理想树 ”, 以便从零开始恢复71431个主题网络的开发结构。 我们定义了知识的深度( KE) 指标, 以及高知识的节点对增加思想树的深度的贡献。 我们通过观察“ X射线图像”, 我们发现两个有趣的现象:(1) 尽管主题的规模可能无限扩大, 但有一个不可逾越变的话题发展: 概念树的深度可能不超过6, 这与经典的 Dxx 度(xxxx) 标准值(K) 标准, 以及高知识的节点贡献超过3 的深度。

0
下载
关闭预览

相关内容

粤港澳大湾区数字经济研究院是一家面向人工智能、数字经济产业和前沿科技的国际化创新型研究机构,坐落于深圳市深港科技创新合作区内。IDEA正与 MSR、Google Brain、DeepMind、OpenAI 等同行者一起推动人类 AI 技术前沿的发展。IDEA 的使命是立足社会需求,研发颠覆式创新技术并回馈社会,让更多的人从数字经济发展中获益。IDEA 秉承共享共赢共生的开源开放精神,积极营造自由而富有激情的创新工作环境,聚集全世界最聪慧的大脑一起创造人类社会最需要的价值。我们坚持科技擎天,产业立地,相信最好的研究从需求中来,到需求中去,最终惠及广大企业和受众。 IDEA 目前已聚集一批包括院士、世界著名大学教授、世界知名开源系统发明人在内的国际一流技术专家,致力于在 AI 基础技术与开源系统、人工智能金融科技、区块链技术与可信计算、企业级 AI 系统、产业智能物联网与智能机器人等领域研发国际顶尖成果,并培育一批国际领先科技企业,带动深圳乃至大湾区万亿级数字经济产业发展。 AIPT(AI 平台技术研究中心)致力于建设支撑人工智能算法、算力和数据的平台,通过具体项目的研发、实施和部署来推进 AI 技术的落地和产业化,团队成立以来,已发布 ReadPaper 论文阅读平台、BIOS 医疗知识图谱两款产品。AIPT 负责人-谢育涛曾任微软公司技术合伙人兼微软(中国)操作系统工程院院长。谢育涛在微软公司工作 20 余年,先后在微软美国总部的 Microsoft Office 产品组、必应团队、微软亚洲互联网工程院以及微软(中国)操作系统工程院、人工智能和云计算等多个研发部门担任重要职务。他在操作系统、搜索技术、人工智能、应用及服务领域拥有丰富的技术与管理经验。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
4+阅读 · 2019年12月2日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
人工智能 | 中低难度国际会议信息6条
Call4Papers
3+阅读 · 2019年4月3日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员