Analyzing trends across industries is critical to maintaining a healthy and stable economy. Previous research has mainly analyzed official statistics, which are more accurate but not necessarily real-time. In this paper, we propose a method for analyzing industry trends using stock market data. The difficulty of this task is that the raw data is relatively noisy, which affects the accuracy of statistical analysis. In addition, textual data for industry analysis needs to be better understood through language models. For this reason, we introduce the method of industry trend analysis from two perspectives of explicit analysis and implicit analysis. For the explicit analysis, we introduce a hierarchical data (industry and listed company) analysis method to reduce the impact of noise. For implicit analysis, we further pre-train GPT-2 to analyze industry trends with current affairs background as input, making full use of the knowledge learned in the pre-training corpus. We conduct experiments based on the proposed method and achieve good industry trend analysis results.
翻译:分析各行业的趋势对于保持一个健康稳定的经济至关重要。以前的研究主要分析了官方统计数据,这些统计数据比较准确,但不一定是实时的。在本文中,我们提出了一个利用股票市场数据分析工业趋势的方法。这项任务的困难在于原始数据相对吵闹,这影响到统计分析的准确性。此外,需要通过语言模型更好地了解工业分析的文字数据。为此,我们从两个角度引入了工业趋势分析方法:明确分析和隐含分析。关于明确分析,我们采用了等级数据(工业和上市公司)分析方法,以减少噪音的影响。关于隐性分析,我们进一步进行GPT-2培训,以分析工业趋势,将时事背景作为投入,充分利用培训前材料中的知识。我们根据拟议方法进行实验,并取得良好的工业趋势分析结果。</s>