When dealing with sensitive data in automated data-driven decision-making, an important concern is to learn predictors with high performance towards a class label, whilst minimising for the discrimination towards some sensitive attribute, like gender or race, induced from biased data. Various hybrid optimisation criteria exist which combine classification performance with a fairness metric. However, while the threshold-free ROC-AUC is the standard for measuring traditional classification model performance, current fair decision tree methods only optimise for a fixed threshold on both the classification task as well as the fairness metric. Moreover, current tree learning frameworks do not allow for fair treatment with respect to multiple categories or multiple sensitive attributes. Lastly, the end-users of a fair model should be able to balance fairness and classification performance according to their specific ethical, legal, and societal needs. In this paper we address these shortcomings by proposing a threshold-independent fairness metric termed uniform demographic parity, and a derived splitting criterion entitled SCAFF -- Splitting Criterion AUC for Fairness -- towards fair decision tree learning, which extends to bagged and boosted frameworks. Compared to the state-of-the-art, our method provides three main advantages: (1) classifier performance and fairness are defined continuously instead of relying upon an, often arbitrary, decision threshold; (2) it leverages multiple sensitive attributes simultaneously, of which the values may be multicategorical; and (3) the unavoidable performance-fairness trade-off is tunable during learning. In our experiments, we demonstrate how SCAFF attains high predictive performance towards the class label and low discrimination with respect to binary, multicategorical, and multiple sensitive attributes, further substantiating our claims.


翻译:在自动化数据驱动决策中处理敏感数据时,一个重要的关切是,在从偏差数据中了解高性能的预测数据,同时尽量减少对性别或种族等某些敏感属性的歧视,这种歧视源于偏差数据。存在各种混合优化标准,将分类性业绩与公平度指标相结合。然而,尽管无门槛的ROC-AUC是衡量传统分类模式业绩的标准,但当前的公平决策树方法只优化分类任务和公平度标准方面的固定阈值。此外,目前的树学习框架不允许对多个类别或多重敏感属性给予公平待遇。最后,公平模型的最终用户应当能够根据特定的道德、法律和社会需要平衡公平性和分类性业绩。在本文件中,我们通过提出一个离门槛的不依赖公平性指标,称为统一人口均等,以及一个衍生出来的分化标准,即为公平性标准 -- -- 为公平性分类的AUC,走向公平的树学习,这一框架延伸到分解和强化的。 与当前水平相比,高性、高性、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性能、高性

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
相关论文
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
6+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员